Quantcast
Channel: Kembara Insan / Engineer's Blog
Viewing all 979 articles
Browse latest View live

Oral Steam & ICE

$
0
0
Soalan Peperiksaan Jurutera IPD dan Jurutera Stim May 2017

*IPD2*
1. Introduce yourself
2. Reason for coming to Oral Exam
3. What is IPD? Definition, Explain about classification
4. List down  the different between Diesel vs Petrol Engine
5. List down the different between 4 Stroke vs 2 Stroke engine
6. Explain the operation of Gas Turbine
7. List down the GT Hazards at your OPU
8. PIC - Terangkan Risk Matrix

*JS2*
1. Explain Heating Surface
2. Explain PIC responsibility
3. Explain blowdown? State the reason for blowdown
4. Explanation on Fire Tube Model?
        – Part  by part
        – 13 essential fitting
5. Explain your work?
6. Tugas-tugas bersama majikan dalam  OSHA 1994?
7. Reason for coming to Oral Exam

*JS2*
1. Definition of Heating Surface & purpose
2. PIC Regulation – Table of Heating Surface
3. Water Quality
        – Specification of Program , Si , Na
        – Code
4. Explain part on Water Tube model
5. What is the Soot Blower & function?
6. Defect Steam Drum Bulging
        – Step from Finding > Repair > Inspection & Test > Operate
7. Regulation related to boiler operation
8. Explain the engineer duty at OPU

*JS1*

1. Definition of Steam Boiler Repair as per SBUPV Regulation 79
2. Explain How to repair Bulging at Steam Drum
3. Explain the installation of expanded tube
4. List down the items in HIRAC
5. How to treat – heat effected zone
6. How to perform Replica Test
7. How does the UT Inspection method detect under surface crack

*IPD2*
1. List down Act related to ICE
2. What is IPD? Definition, Explain about classification
3. List down  the different between Diesel vs Petrol Engine
4. Explain the operation of Gas Turbine
5. Can Engineer replace Driver?
6. How to check overspeed if no indication at panel and what to do
7. Specification of Diesel for Gas Turbine? What is the difference of Diesel for vehicle?
8. List down the different between Otto & Diesel Cycle

*JS1*
1. Apa pekerjaan anda sebagai Steam Engineer
2. Repair procedure details with documents
3. Penetrant type and relation with CHRA
4. Kesesuaian DT & NDT pada defect :
        – RT
        – Dye-Pen
        – UTTG
        – Hardness
5. Definition of Boiler Integrity?
6. Definition of Repair?
7. Clause RT used for which defect

*IPD2*
1. Explain about What is IPD? Definition, Explain about classification
2. Operation of Gas Turbine
3. Operation of Diesel Engine
4. Hazard of Gas Turbine / Diesel Engine
5. Protection and Control of Gas Turbine
6. Specification of Diesel for Gas Turbine? What is the difference of Diesel for vehicle?
7. PIC responsibilities - explain
8. Scenario : If the plant have 7 unit of ICE (Total Power 20,000 kW)
        – Specify requirement for Competent Driver / Engineer

*JS2*
1. List down the Boiler Component
2. Explain about Water Gauge
3. List down all 13 fittings for Boiler
4. PIC responsibility
5. Definition of Heating Surface and how to calculate

*JS2*
1. List down the Boiler Component
2. 13 fittings and explain as per regulation requirement
3. Design of Fusible Plug 
        – What type of Metal
        – Explain the function & process how copper melt
4. Q=m C AT . Explain radiation , convection and conduction
5. Heating Surface
        – Steam Drum surface calculation
        – Why the downcomer not part of heating surface
        – Why the economizer not considered as heating surface
6. Explain why Low Water Alarm required casing. 
        – Demonstrate how Low Water functioning at Fire Tube model
7. Furnace and explain the type of furnace
8. Where is the radiation take place at Boiler
9. List down the Boiler Hazard
10. PPE & Signage

*JS2*
1. 13 fittings and its function. Show the location at Boiler Model
2. Explain about Water Treatment. Internal and external water treatment. Facility Involved
3. Specify the Water Specification before and after treatment
4. Method of Boiler Storage. Wet and Dry Storage
5. Specify of Law and Regulation related to Boiler
6. PIC responsibility
7. Definition of Heating Surface and how to calculate

Ref FB Din Msiea

Soalan Jurutera dan Driver Setim Gred 2 & 1

$
0
0
1. Apa itu steam boiler?
Suatu bekas tertutup dimana stim dijana melebihi tekanan atmosfera.

2. Apakah perbezaan diantara boiler fire tube dan water tube?
BFT dimana api berada dildalam tiub dan air berada diluar tiub manakala BWT dimana api
berada diluar tiub dan air berada didalam tiub.

3. Berikan sebab-sebab boiler mengeluarkan asap putih?
i. nisbah udara melebihi nisbah bahan api.
ii. Bahan bakar basah.

4. Berikan sebab-sebab boiler mengeluarkan asap hitam?
i. nisbah bahan api melebihi nisbah udara.

5. Apakah warna asap apabila boiler beroperasi dengan baik?
Tidak akan nampak apa-apa kesan asap atau jelaga.

6. Boiler dapat dibahagikan kepada 13 pemasangan wajib, namakan pemasangan tersebut?
a. Safety Valve
b. Gauge Glass
c. Pressure Gauge
d. Feed Pump
e. Blowdown Valve
f. Main Stop Valve
g. Fusible Plug
h. Feed Check Valve
i. Low Water Fuel Cut Off
j. High Low Water Alarm
k. Inspector Test Attachment
l. Name Plate
m. Registration Plate

7. Apakah fungsi name plate? Apakah maklumat yang terdapat padanya?
Maklumat boiler terdapatnya. Antaranya;
a. No. siri
b. Model
c. Design code
d. HT
e. Bila HT dibuat
f. Nama & Alamat kilang

8. Bagaimana anda menuji gauge glass?
a. Pastikan semua cock dalam kedudukan ‘service’
b. Pastikan ada air dalam stim drum
c. Pastikan tidak ada orang pada kawasan drain
d. Pastikan kita memakai PPE – nyatakan
e. Berdiri disebelah g.g
f. ‘Crack open’ drain cock selama 30 s kemudian baru full open – untuk elak glass
pecah akibat ‘thermal shock’ – kita akan nampak stim bercampur air keluar melalui
drain
g. Tutup water cock, kita akan nampak stim sahaja akan keluar melalui drain
h. Buka kembali water cock, dan ‘crack close’ selama 30 s dan full close steam cock,
kita akan nampak air sahaja akan keluar melalui drain
i. Buka kembali steam cock dan tutup drain cock – pastikan air kembali keparas normal

9. Bagaimana anda menukar gauge glass yang pecah?
a. Pastikan kita memakai PPE – nyatakan
b. ‘Isolate’ kan stim serta water connection dengan menutup kedua-dua valve
c. Tutup water dan stim cock dan buka drain cock
d. Pastikan bawa spanner yang bersesuian. Buka nut g.g
e. Buka dan tanggalkan kaca yang pecah
f. Jangan guna kembali flat brass packing washers
g. Pasangkan kaca baru yang tersedia ada, mesti 1/4” lebih agar dapat ‘play’ dan tahan
‘thermal expansion’
h. Selitkan nut serta packing yang baru pada kaca baru
i. ‘Centre’kan kaca serta ikat guna tangan dan akhir sekali ketatkan ¼ pusingan
mengunakan spanner
j. Setelah selesai, ‘on line’ kan kesemua valve serta crack open steam cock selama 10-
20 min baru full open kedua dua cock dan tutup drain cock

10. Bagaiamana anda membersihkan gauge glass yang tersumbat?
a. Pastikan semua cock dalam kedudukan ‘service’
b. Pastikan tidak ada orang pada kawasan g.g
c. Pastikan kita memakai PPE – nyatakan
d. Bawa spanner serta dawai sepanjang 3kaki yang depannya yang telah dibengkokkan
e. Berdiri disebelah g.g. Pastikan bahagian air atau stim yang tersumbat. Kalau
bahagian air tersumbat – dalam g.g tak nampak air dan kalau bahagian stim
tersumbat – dalam g.g akan penuh air.
f. Contohnya bahagian air tersumbat, maka dalam g.g tak kelihatan air
g. ‘Isolate’ kesemua valve pada bahagian air dan stim, tutup kesemua cock dan buka
drain cock, supaya air dan stim pada bahagian drain dapat dikeluarkan
h. Dengan menggunakan spanner, buka ‘cleaning plug’ pada bahagian air, dari sebelah
tepi g.g, gunakan dawai untuk mengorek serta bersihkan laluan / bukaan air pada
g.g. Setelah pasti kesemua kekotoran telah dibersihkan, buka valve air dan buka
perlahan – lahan water cock serta buka habis supaya kesemua kekotoran dapat
diblow keluar.
i. Pasang kembali ‘cleaning plug’ dan ‘inline’kan kesemua valve dan cock dan pastikan
air kembali ke paras normal g.g
j. Jika masih tersumbat ulang semula procedur diatas
11. Apa kamu akan buat jika satu gauge glass pecah?
Jika perlu, digantikan. Tetapi jika tidak, boiler masih boleh dijalankan kerana masih terdapat
satu lagi. Pengawasan perlu dibuat lebih kerap lagi.

12. Jika kedua-dua gauge glass pecah, apa anda akan buat?
Boiler mesti diberhentikan, cari punca-puncanya dan kedua-dua GG mesti digantikan.
13. Ada berapa jenis gauge glass? Namakan.
a. tubular
b. reflex
c. plate

14. Bila kamu perlu test gauge glass?
Paling kurang sekali satu shift

15. Ada berapa jenis safety valve? Namakan.
a. dead weight
b. spring loaded

16. Bagaiamana kamu set safety valve?
a. Inspector mesti hadir
b. Isi air dirawat
c. Pasang Inspector test pressure gauge pada Inspector’s test pressure gauge
attachment
d. Light off boiler
e. Naikkan tekanan stim
f. Angkat lever bila tekanan mencapai 75% of the lowest-set safety valves
g. Naikkan lagi tekanan ke tekanan lowest-set s.v/v
h. Jika s.v. pops, kurangkan firing
i. Ambil bacaan tekanan pada bila s.v/v pops and reseats
j. Jika tak pop /reseat pada tekanan ditetapkan, kurangkan firing agar tekanan kurang
dan adjust the s.v/v’s spring compression and/or valve’s blowdown
k. Naikkan tekanan pada set pressure sekali lagi dan ambil bacaan tekanan valve pops
& reseats
l. Apabila s.v/v mula beroperasi, kurangkan firing kepada tekanan minima
m. Ulang langkah j - l sehingga tekanan yang dikehendaki diperolehi
n. Kurangkan tekanan stim pada suatu tekanan yang selamat
o. Gag s.v/v yang baru disetkan
p. Naikkan tekanan stim kepada tekanan s.v/v yang kedua tinggi
q. Ulangi langkah f - p sehingga kesemua s.v/vs di setkan
r. Kurangkan tekanan stim pada tekanan selamat dan buka kesemua gags

17. Ada berapa safety valve pada water tube boiler?
Paling kurang 2

18. Bagaimana kamu set safety valve pada boiler yang mempunyai superheater tube?
Mengapa?
S.V. pada superheater tube perlu disetkan paling rendah dari steam drum. Ini bagi
mengelakkan ‘stravation of steam’ pada s/heater tube. Apabila S.V. pada s/heater tiub
‘blow’ dulu masih terdapat steam mengalir dalam tiub tersebut maka ia tidak akan musnah.

19. Apa itu syphone? Mengapa perlu ada syphone?
Paip yang berbentuk bulat lagi bengkok yang dipasang pada P.G.

20. Mengapa perlu ada tanda pada muka pressure gauge?
Tanda merah dibuat pada muka P.G. bagi menentukan tekanan pengoperasian boiler tidak
melebihi ASWP dengan hanya sekali pandang dari kedudukan firing.

21. Ada berapa jenis blowdown? Nama serta terangkan fungsi setiap satu. Dimanakah
kedudukan setiap satu?
Ada 2 jenis;
a. continuous
b. intermittent

22. Bagaimana kamu buat blowdown?
a. Pastikan semua b/down valve dalam kedudukan ‘service’
b. Pastikan tidak ada orang pada kawasan b/down pit / chamber
c. Pastikan ada air pada paras normal sebelum b/down dibuat
d. Pastikan kita memakai PPE – nyatakan
e. Jika dari kedudukan b/down, kita tidak dapat melihat g.g, kita ke stationkan seorang
pembantu di tempat g.g
f. ‘Crack open’ dan full open fast open valve
g. Buka slow open valve – pastikan kita dapat melihat paras air di g.g
h. Setelah puas hati kuantiti air yang hendak dibuang, tutup slow open valve
i. Tutup fast open valve dan buka kembali slow open dan tutup kembali slow open
j. Pastikan air kembali ke paras normal g.g

23. Ada berapa jenis feed pump yang digunakan pada boiler?
a. Centrifugal
b. Reciprocating

24. Dimanakah kedudukan fusible plug pada boiler water tube?
3in dari kedudukan paling bawah drum

25. Dimanakah kedudukan fusible plug pada boiler fire tube?
3in dari kedudukan tiub paling tinggi

26. Ada berapa jenis fusible plug? Namakan
a. Jenis fire side – dipasang dari kedudukan fire side
b. Jenis water side – dipasang dari kedudukan water side

27. Apa maklumat yang terdapat name plate?
• Manufacture/Makers name & address
• Manufacture/Makers serial no
• Manufacture/Makers design pressure
• Code/spec/rule of boiler design
• HT Pressure
• Date of HT

28. Apakah tugas anda sebagai boilerman bagi menjaga keselamatan anda dan boiler dibawah
jagaan anda?
• Elak dari melakukan perkara ‘serious misconduct’
• Pastikan tidak berlaku ‘dangerous occurances’
• Melaksanakan arahan jurutera
• Maintain
- Paras air
- Test GG
- Lakukan blowdown bila perlu
- Bekalan bahanapi
- Bekalan bahan kimia ke feed pump
- Air Feed
• Memastikan logi dalam keadaan selamat
• Simpan rekod bekalan & pengunaan fuel
• Melakukan pemeriksaan berkala
• Selalu lakukan visual inspect keadaan jentera
• Kemaskan buku log jentera
- Rekodkan data loji serta kejadian luar biasa
- Penyelenggaraan dilakukan pada setiap shift

29. Apakah tujuan anda menghadiri temuduga ini?
Mengikut akta 29(2a), sesiapa yang menjaga operasi mesin IPD mesti mempunyai sijil
kekompetenan seperti mana yang dikehendaki oleh JKKP.

30. Apakah yang anda faham tentang OSHA dan FMA?
OSHA – Occaputional Safety and Health Act (Akta Keselamatan dan Kesihatan Pekerjaan)
Dikuatkuasakan pada tahun 1994, meliputi FMA, skop yang lagi luas. OSHA 1994, Akta –
undang2 yang harus dipatuhi dan diluluskan oleh Parlimen. Kandungan termasuk keperluan
pekerja berkompeten, tugas2 pengendali, pemeriksaan berjadual, salah laku sewaktu
bertugas, kejadian2 merbahaya
FMA – Factory and Machinery Act (Akta Kilang dan Jentera). Diwartakan tahun 1967,
mempunyai 15 peraturan. Akta139, 1967: Akta untuk mengawal perkara2 berkenaan
dengan keselamatan, kesihatan & kebajikan pekerja, pendaftaran dan pemeriksaan
peralatan jentera dan perkara yang berkenaan dengannya.

31. Apakah peranan JKKP?
Pihak yang mewakili kerajaan bagi menguatkuasakan peraturan-peraturan dibawah akta
tersebut.

32. Dalam keadaan bagaimana kamu perlu menghubungi JKKP?
• Membeli, memasang Injin / Mesin baru.
• Kawalan mutu sewaktu pembuatan Injin / Mesin berkenaan.
• Mulatugas Injin / Mesin pertama kali.
• Senggaraan Berjadual (khususnya peralatan yang “bersijil”)
• Mengubah-suai, membaik-pulih besar-besaran Injin (major repairs / rehabilitation).
• Menambah Injin / Mesin pada loji yang sedia ada.
• Memindah, menjual atau melupuskan Injin / Mesin.
• Lain-lain perkara yang dinyatakan secara khusus oleh pihak JKKP.

33. Apa itu ASWP?
Bermaksud tekanan maksima yang dibenarkan bagi sesuatu boiler atau unfired pressure
vessel yang ditetapkan oleh Inspector.

34. Apa itu Design Pressure?
Bermaksud tekanan maksima yang telah ditetapkan oleh Boiler Manufacturer atau pada
unfired pressure vessel atau pada fittings atau pada piping yang ada bersamanya.

35. Siapakah Inspecting Authority?
Bermaksud nama bahagian atau Jabatan yang bertanggung jawab keatas steam boiler atau
unfired vessel seperti tertera pada Fourth Schedule.

36. Apakah tugas-tugas Inspecting Authority?
• Mengkaji dan menilai design drawing sebelum diserahkan kepada JKKP.
• Menjalankan quality inspection semasa pembinaan dan pengeluaran boiler.
• Sebagai saksi bagi pihak JKKP semasa menjalankan essential testing.

37. Apakah perbezaan antara OSHA dan FMA?

38. Namakan butir-butir yang terdapat pada C.F?
• Tarikh sah CF sehingga…
• ASWP
• No PMD
• Nama Pembuat
• No Siri
• Nama Boiler & Jenis
• Heating Surface
• Nama Pemeriksa

39. Siapa itu Inspector?
Pengarah Negeri JKKP – setiap negeri ada satu inspector.

40. Siapa itu Ketua Inspector?
Ketua Pengarah JKKP – hanya ada satu sahaja

41. Apakah WPS atau PTW?
• WPS – Welding Procedure Specification
• PTW – Permit To Work

42. Apakah jenis-jenis mesin yang tidak tertakluk di bawah Akta?
• Enjin untuk menggerakan kenderaan
• Peralatan yang digerakkan secara ‘manual’ kecuali ‘hoist’
• Mesin serta peralatan persenderian untuk kegunaan persendirian
• Peralatan pejabat

43. Apakah jenis kemalangan yang mesti dilaporkan kepada JKKP mengikut Akta Kilang dan
Jentera 1967?
• Kemalangan yang menyebabkan kematian.
• Kemalangan yang menyebabkan kecederaan serius dan mangsa tidak dapat bertugas
selama 4 hari berturut-turut.
• Kejadian yang menyebabkan kerosakan serius pada mesin / enjin.
• Roda pengimbang atau lain-lain bahagian yang berputar pada mesin / enjin pecah
atau terlerai.
• Kerosakan struktur yang menyebabkan krin, hoist, mesin dll. runtuh.
• Letupan, kebakaran dsb. yang menyebabkan timbul keraguan terhadap tahap
keselamatan struktur, mesin / enjin dan lain-lain.

44. Apakah perbuatan-perbuatan yang menyalahi tatakerja yang serius dalam FMA?
• Tidur
• Mabuk atau kurang sedar
• Meninggalkan mesin / enjin tanpa pengawasan
• Gagal membuat laporan kerosakan mesin / enjin yang serius
• Kelalaian yang menyebabkan kerosakan serius pada mesin / enjin

45. Apakah hubungkait di antara penyeliaan dan keselamatan pekerjaan?
Penyeliaan yang berkesan mempunyai kaitan yang sangat rapat dengan keselamatan. Penyeliaan
yang berkesan akan memastikan tahap keselamatan sentiasa terjamin dengan cara:
• Penyelia / pengendali perlu mempunyai pengetahuan dan kemahiran yang secukupnya
untuk mengendalikan mesin / injin dan juga pekerja bawahan.
• Tidak melakukan kesilapan atau kecuaian yang boieh membawa kepada kemalangan,
kerosakan mesin / injin dsb.
• Memastikan hanya orang atau pekerja yang sesuai sahaja untuk melakukan sesuatu tugas
mengikut tahap-tahap kesusahan kerja.
• Memastikan mesin / injin sentiasa beroperasi da lam keadaan yang baik dan selamat
serta sentiasa mematuhi undang-undang yang berkaitan.

46. Jelaskan apakah aspek-aspek keselamatan dan kesihatan yang perlu ada di tempat
bertugas?
Ruang kerja yang bersih dan teratur. Alat dan pakaian keselamatan yang sesuai, cahaya
dan gantian udara yang cukup termasuk mempunyai escape route.

47. Apakah tindakan seharusnya dilakukan sekiranya berlaku kebakaran dan kemalangan di logi
anda bekerja?
Tenang, dan bertindak , secara rasional. Sekiranya kebakaran berlaku kita hendaklah
pastikan jenis kebakaran tersebut agar langkah memadan api yang sesuai boleh dijalankan.
Sekiranya berlaku kemalangan, pastikan orang yang cedera diberi pertolongan yang
bersesuaian disamping itu langkah yang perlu juga harus diambil agar penjalanan enjin
tidak terjejas.

48. Berapakah masa interval untuk pemeriksaan JKKP ke atas mesin-mesin di kilang anda?
15 bulan mengikut akta, dan lanjutan selama 3 bulan sebanyak 2 kali sahaja. Hanya
kelulusan dari Ketua Inspektor dan di recomand oleh Inspektor

49. Mengapa purging sangat penting dan bila dilakukan?
a. “PURGING” mestilah dilakukan terlebih dahulu sebelum bahanapi dimasukkan
kedalam kebuk pembakaran.
b. Bertujuan untuk mengeluarkan sisa-sisa bahanapi atau gas dari Kebuk Pembakaran.
c. Boleh menyebabkan letupan sekiranya diabaikan.

50. Bila purging dilakukan?
• Sebelum memulakan api yang pertama kali
• Jika api yang pertama kali itu gagal dihidupkan dalam masa :-
.. 10 - 20 saat untuk bahan pembakar gas dan light fuel
.. 30 - 60 saat untuk heavy fuels

51. Bagaimana melakukan purging?
• Semua isolating valve hendaklah ditutup
• Semua shut-off valve ditutup
• Hidupkan kipas draught dan blower
• Kapasiti aliran udara yang dialirkan hendaklah sama atau lebih dari 25%
• Perubahan isipadu dalam furnace tidak kurang dari 5 kali
• Kesemua dampers dan ducting yang memasuki dan keluar dari furnace hendaklah
dibuka
• Masa purging hendaklah dibuat selama 5 minit

52. Apakah kesan atau hasil dari pembakaran?
Sebahagian kesan yang terjadi semasa pembakaran fuel oil terhadap sifatnya
• Kesan sulfur
Agent pengaratan kerana ia bersifat asidik, biasa terjadi pada chimney, stack air heaters
dan economizer.
• Kesan moisture
Jika dibenarkan melalui atomizer akan menyebabkan api padam, kurang suhu
pembakaran, memanjangkan flame. Ia akan menyumbatkan strainer dan sprayer plates
maka maintenance yang lebih kerap mesti dilakukan.

53. Selain dari karbon dan hidrogen, sulfur merupakan element penting dalam fuel. Mengapa
penting jumlah sulfur dikurangkan dalam fuel ?
• Untuk mematuhi undang undang pencemaran, kerana sulfur oksida akan terbentuk
semasa pembakaran fuel yang mana sangat merbahaya kepada kesihatan. Biasanaya
Apabila kepadatan penduduk sesuatu tempat adalah tinggi makan peratus gas sulfur
sulfur oksida mesti dikurangkan melalui meninggikan chimney atau lokasi logi boiler
dipindahkan.
• Sulfur oksida dan moisture yang terbentuk semasa pembakaran akan besatu menjadi
asid surfuric. Ini akan mengakibatkan pengaratan pada tiub dan bahagian logam lain
lalu menyebabkan kerosakan terok pada besi / plet.

54. Ada berapa jenis superheater?
a. Convection
Dalam sesetengah boiler superheater tiub dilindungi dari radiant heat melalui water
screen tubes. Barisan tiub ini akan menyerap radiant heat dari furnace maka
superheater tersebut dipanaskan melalui gelombang convection tidak melalui direct
radiant.
b. Radiant
Dalam sesetengah boiler pula superheater tiub tidak mempunyai water screen tube
teapi terdedah terus kepada radiant heat dari furnace.

55. Apakah aktiviti -aktiviti yang terlibat sebelum commissioning boiler?
a. Pre commissioning cleaning
• Alkali BoilingOut
• Chemical Cleaning
b. Drying out
c. Hydrostatic Test
d. Safety Valve Setting / Floating
e. Stem Blowing

56. Apa tujuan alkali boiling out? Bagaimana ia dilakukan?
Tujuan alkali boiling out adalah untuk membersihkan kesan gris dan minyak yang
tertinggal semasa pembinaan boiler baru atau selepas kerja repair dibuat.
 Cara-cara dilakukan;
a. Isi air yang mengandungi campuran sama bah. tri-sodium phosphate, calcium
carbonate dan caustic soda: 6lb of campuran kepada setiap 1000lb air
b. Jalankan boiler pada kadar perlahan tetapi tidak melebihi 20 bar
c. Stabilkan tekanan beberapa jam
d. Tambah air sampai H
e. Guna continous blow down selama lebih 48 jam
f. Ganti air dan kimia
g. Ambil sample dan pastikan samples are clear and tetap sama
h. Stop boiler dan tunggu sejuk
i. Buka semua vents & drains
j. Buka drum:
.. Kesat jika ada sludge
.. Bilas dengan air

57. Apa tujuan chemical cleaning? Adaberapa cara ia dilakukan? Bagaimana ia
dilakukan?
Tujuan chemical cleaning adalah untuk membuang scale. Terdapat 2 cara cleaning;
 a. Soaking
b. Recirculation
 Soaking tidak berkesan sebagaimana recirculating.Tetapi, peralatan kurang
digunakan

a. Soaking
• Isi boiler, economizer & s/heater dengan inhibited acid
• Beri masa bagi asid bertindak
• Bilas
• Masukkan larutan caustic soda bagi menutralkan kesan asid
b. Recirculation
• Gunakan pam untuk mengedarkan inhibited acid kesemua bah boiler
• Uji cleaning solution
• Jika solution shows menunjukan tiada kesan- weakening, ini
menunjukan scale sudah terlarut
• Bilas dengan caustic soda solution untuk neutralise kesan asid

58. Apa tujuan Hydrostatic Test (H.T.)? Bagaimana ia dilakukan?
• Tutup boiler stop v/v
• Tutup kesemua boiler drain v/vs
• Buka v/vs drum dan S/H
• Isikan boiler & s/Hs dengan air dirawat / air biasa sehingga boiler stop v/v dengan
menggunakan pam
• Tutup vent v/vs apabila air mengalir keluar melaluinya
• Naikkan tekanan air ke tekanan H.T (2x or 1.5x +50 psi)
• Tetapkan tekanan sekurang 20 minit
• Masa yang sama , pemeriksaan visual dilakukan pada bahagian bertekanan
.. Jika terdapat kebocoran, ia perlu dibaiki dan HT diulangi
.. Selepas ujian dibuat, drain serta vents perlu dibuka

59. Bila H.T. perlu dilakukan?
a. UPV dan boiler baru
b. Selepas menjalani kerja baik-pulih
c. Sekurang-kurangnya sekali dalam 7 tahun
d. Jika pemeriksaan dalaman yang terperinci tidak dapat dilakukan pada boiler
e. Bila mana-mana bahagian boiler atau paip dikimpal

60. Apa langkah berjaga-jaga perlu diambil semasa melakukan H.T.?
a. Pastikan Inspektor hadir
b. Jangan gunakan air panas
c. Jangan lupa tanggalkan ‘gag’ pada S.V. selepas lakukan H.T.

61. Apa tujuan boiler storage? Ada berapa jenis? Bagaimana ia dilakukan?
Melindungi boiler dari proses pengaratan / pitting semasa boiler tidak digunakan /
beroperasi. Ada 2 jenis storage;
a. Wet Storage – jika boiler tidak digunakan kurang dari 1 bulan. Cara-cara;
• Selepas draining,
• Cuci & bersihkan boiler untuk menghilangkan sludge
• Isi boiler dengan air dirawat
• Tambah caustic soda (3lb /1000 gallon air)
• Tambah sodim sulphite (1.5lb /1000 gallon air)
• Panaskan air dengan low fire (approx. 30 mins) untuk membuang gas
terlarut
• Blank semua sambungan ke boiler
• Pasangkan line vent nitrojen pada tekanan (0.3 bar)
• Jika perlu, pasangkan temporary water inspection tank pada vent
• Lakukan routine inspections to pastikan air sentiasa ada & ada tekanan
nitrogen
• Uji air boiler mingguan
b. Dry Storage - jika boiler tidak digunakan lebih dari 1 bulan.
• Drain boiler
• Cuci & bersihkan boiler
• Keringkan boiler mengunakan angin panas
• Letakan lime / silica gel dalam boiler
• Seal boiler hanya untuk sambungan nitrogen ke line vent
• Maintain tekanan nitrogen pada 5 psig
• Periksa bekalan nitrogen selalu

62. Apa tujuan boiler drying-up? Bagaiamana ia dilakukan?
Tujuan drying-up adalah untuk tujuan warming up & mengeringkan bhg boiler;
• Bahan Refractory
• Bhg boiler yang tidak boleh drain
 Tata cara dilakukan;
• On kan boiler
• Jalankan api rendah utk menghasilkan aliran wap yang keluar melalui drum
vent
• J/masa : 48 jam - 1 minggu
• Kadar tekanan boiler dapat dikawal melalui membuka v/v drain s/heater
• Bila tekanan drum dalam 2 bar, buka boiler drum vent v/vs

63. Bagaimana kamu memberhentikan boiler dalam keadaan biasa?

64. Bagaimana kamu memberhentikan boiler dalam keadaan merbahaya? Atau dalam
keadaan berikut:
a. Safety Valve tidak blow
b. Kebocoran
c. Gauge Glass pecah
d. Paras air merbahaya (rendah)
e. Paras air tinggi

65. Mengapa bahan bakar perlu disediakan terlebih dahulu?
a. Untuk mendapat pembakaran lengkap
b. Agar pembakaran yang efficient dapat dicapai
c. Untuk mengelakkan keadaan tidak stabil dalam furnace lalu mengakibatkan
letupan furnace
d. Penyedia bahan api pula bergantung kepada jenis fuel yang akan digunakan

66. Senaraikan langkah-langkah keselamatan yang kamu ambil sebelum memula-
tugaskan boiler / pemeriksaan awal?
a. Pastikan PTW telah dibatalkan
b. Pemakaian PPE
c. Pastikan orang tak berkenaan tidak berada di logi
d. Periksa;
• buku log
• water level overhead tank & deaerator tank
• Paras air dalam drum ½ - ¾ pada W.G.
• Chemical dising equipment
e. Tutup;
• Header drain cock
• Blowdown valve
• Main stop valve
• Auxiliary valve
f. Buka
• S/Heater drain

67. Bagaimana anda memulakan operasi boiler?
a. Lakukan kerja-kerja pemeriksaan awal
b. Memulakan firing
• Purging selama 10 – 15 minit
• Masukkan fuel dan start light off
• Tutup furnace door
• Jalankan FD, S Fan
• Buka damper ID Fan & Ash Pit Door – create natural draft & kemudian
jalankan FD Fan
• Apabila stim keluar dari air cock, tutup dan naikkan pressure seperti berikut;
• 0 to 50 psi – 45 min
• 50 to 200 psi – 45 min
• 200 to 300 psi – 20 min
• Buka MSV pada working pressure

68. Bagaimana anda membuat normal shutdown boiler?
a. Tutup MSV
b. Stop fuel supply
c. Stop semua fan – FD, S Fan
d. Keluarkan api dari furnace
e. Buka semua steam darin valve
f. Kerangkan tekanan gradually sehingga tahap selamat
g. Buka s/heater drain
h. Buka air cock
i. Buka outlet damper / furnace door untuk natural draft / cooling
j. Purging dengan start stop ID Fan
k. Pastikan paras air dalam ½ level G.G

69. Namakan jenis jenis tiub pada sesuatu boiler?
a. Generating Tube
• Kedudukan direct kepada flue gas
• Material – Medium Carbon Steel
• OD – 50 to 76mm & Thick – 3.2 to 4.5mm
b. Downcomer Tube
• Not direct to flue gas
• D > 150mm (6in)
c. Superheater tube
• Material – High Carbon Steel
• To generated superheated steam
d. Distributing Tube / Injector
• In upper drum, from FCV to inner sec. Below LWL
• There’s hole 1/8 in facing down to avoid kocakkan air
• To distribute water in drum
e. Economizer Tube
• To increase FW temp.
• To lower flue gas temp escaping to exhaust

• Last pass 

SOALAN ORAL IPD/ICE

$
0
0
1. Apa maksud injin?
-kumpulan2 komponen yg dipasang mengikut urutan.
-mengubah tenaga haba kpd tenanga mekanikal
-bergerak mengikut aturan.

2. Apa beza internal (ICE) & external combustion engine (ECE)?
-ICE : pembakaran berlaku didalam kebuk pembakaran @ chamber.
-ECE: pembakaran berlaku diluar chamber.
-cth: ICE : Gas Turbine
ECE: Stim turbine

3. Nyatakan komponen utama pada injin?
a) Cylinder head
b) Cylinder Block
c) Sump

4. Terangkan Operasi 2 stroke petrol enjin?

Induction 
  • Inlet port tutup
  • Scavenging port terbuka
  • Memaksa campuran gas daripada Crank chamber.
Compression
  • Piston bergerak: BDC Ke TDC
  • Scavenging berlaku utk membersihkan chamber to allowed fresh to enter
Firing stroke
  • Piston naik utk menambah tekanan.
  • Injector spray fuel, berlaku explosion.
Exhaust stroke
  • Tekanan akan menolak piston ke bawah akibat firing.
  • Exhaust port terbuka dan buang gas, pada waktu yg sama udara bersih akan masuk.
5. Terangkan Operasi 4 stroke petrol enjin?
Induction 
  • Inlet valve buka.
  • Exhaust valve tertutup
  • Piston bergerak TDC ke BDC.
  • Memaksa udara masuk (180 darjah)
Compression
  • Piston bergerak: BDC Ke TDC
  • Valve Inlet & Exhaust tertutup. 
  • Udara dimampat,volume kurang.
  • Crank shaft pd kedudukan 360 darjah.
Firing stroke
  • Valve Inlet & Exhaust tertutup. 
  • Palam pencucuh (spark plug) percikan maka berlaku pembakaran disebabkan oleh piston sampai ke TDC.
  • Piston ditolak ke bawah.
Exhaust Stroke
  • Valve Inlet tutup & Exhaust terbuka. 
  • Piston naik ke atas sampai ke TDC & menolak gas keluar melalui exhaust valve.
  • Pusingan 720 darjah & berakhirlah 1 kitaran.
6. Terangkan Operasi 2 stroke diesel enjin?

Induction 
  • Inlet port tutup
  • Scavenging port terbuka
  • Injector memaksa campuran diesoline daripada Crank chamber.
Compression
  • Piston bergerak: BDC Ke TDC
  • Scavenging berlaku utk membersihkan chamber to allowed fresh to enter
Firing stroke
  • Piston naik utk menambah tekanan.
  • Injector spray fuel, berlaku explosion.
Exhaust stroke
  • Tekanan akan menolak piston ke bawah akibat firing.
  • Exhaust port terbuka dan buang gas, pada waktu yg sama udara bersih akan masuk.

7. Terangkan Operasi 4 stroke diesel enjin?

Induction 
  • Inlet valve buka.
  • Exhaust valve tertutup
  • Piston bergerak TDC ke BDC.
  • Memaksa udara masuk (180 darjah)
Compression
  • Piston bergerak: BDC Ke TDC
  • Valve Inlet & Exhaust tertutup. 
  • Udara dimampat,volume kurang.
  • Crank shaft pd kedudukan 360 darjah.
Firing stroke
  • Valve Inlet & Exhaust tertutup. 
  • Injector spray fuel, berlaku pembakaran disebabkan oleh piston sampai ke TDC.
  • Piston ditolak ke bawah.
Exhaust Stroke
  • Valve Inlet tutup & Exhaust terbuka. 
  • Piston naik ke atas sampai ke TDC & menolak gas keluar melalui exhaust valve.
  • Pusingan 720 darjah & berakhirlah 1 kitaran.
8. Terangkan Operasi Rotary Engine?

Ø  -Beroperasi sama seperti enjin berpiston tetapi bebas dari kelemahan/masalah komponen-komponen bergerak.
Ø  Prinsip utama dimana rotor yang mempunyai 3 lobe, drive shaft dan casing.
Ø  Rotor berputar didalam kebuk pembakaran berbentuk ‘epitrochoidally’, ketiga-tiga hujung lobe bersentuh dengan bahagian dalam kebuk, lalu membentuk 3 kebuk yang mengandungi isipadu berlainan. 
Ø  Dalam setiap kebuk akan berlaku proses mampatan, masukan, kuasa serta ekzos. Masukan/sedutan

Ø  Apabila rotor berputar C.W injap masukkan akan terdedah dan isipadu kebuk akan bertambah menyebabkan ‘depression’, lalu campuran bahan api dan udara aka dipaksa masuk kedalam kebuk pada tekanan atmosfera.

9. Nyatakan Perbezaan antara 2 stroke dan 4 stroke injin?
Bil
Pergerakan
4 stroke
2 stroke
1
Power
2 pusingan crankshaft 720 deg
1 pusingan crankshaft 360 de
2
Kuasa untuk isipadu selinder yang sama
Kecil
1.5 lebih besar dari 4 stroke
3
Valve
Ada
Tiada
4
Pembinaan
Mahal
Murah
5
Kecemaran spark plug
Sikit
Banyak
6
Penggunaan bahan api
Sedikit
Banyak
7
Penggunaan minyak
Sedikit
Banyak
8
Keburukkan
Sedikit
Banyak
9
Kestabilan kendalian
Tinggi
Rendah
10
Keteguhan
baik
Baik

10. Nyatakan Perbezaan antara diesel dan petrol injin?

Keterangan
Enjin Disel
Enjin Petrol
-          Jenis bahan api
-          Minyak disel
-          Minyak Petrol
-          Sistem pembakaran
-          Nisbah mampatan
-          Komponen pembakaran
-          Operasi
-          Kesesuaian
-          Kuasa dan saiz
-          Compression ignition
-          Tinggi
-          Injector
-          Sesuai untuk kelajuan seragam, lambat bertindak balas terhadap perubahan beban dan kelajuan tinggi
-          Sesuai untuk enjin bersaiz besar, untuk kenderaan tugas dan industri
-          Rendah – enjin bersaiz lebih besar untuk kuasa yang sama
-          Spark ignition
-          Rendah
-          Spark plug
-          Sesuai untuk kelajuan seragam, cepat bertindak balas terhadap perubahan beban dan kelajuan enjin
-          Sesuai untuk enjin dan kenderaan bersaiz sederhana dan kecil
-          Tinggi – enjin dengan saiz yang lebih kecil

11. Terangkan perbezaan antara carburetor dan fuel injection?

Carburetor       : Udara bercampur dengan bahan api.

Fuel Injector    : Menyemburkan bahan api.

12. Terangkan perbezaan antara turbocharger dan supercharger?

Turbocharger   : Digerakkan oleh Exhaust.
                                    : Berpusing dengan lebih pantas disebabkan tidak                                                       bersambung  dengan engine.
                                    : Spinning rate : 15,000rpm.

Supercharger    : Digerakkan oleh Crankshaft.
                                    : Bersambung terus dengan enjin through belt.
                                    : Spinning rate : 50,000rpm.

13. Terangkan Hubungkait antara crankshaft dan camshaft?

-          Camshaft dipusing oleh Crankshaft menggunakan timing belt @timing chain.

14. Terangkan Hubungkait antara piston dan valve?

-         Pengerakan piston menentukan buka tutup valve.

15. Terangkan sistem penyejukkan dalam injin?
 Tujuan:
       Mengawal suhu enjin daripada terlalu panas
       Untuk memajukan pengewapan bahan api dan menjaga minyak pada kelikatan terbaik

Jenis:  Fins & Water Jacket
a.       Fin : udara
b.      Water Jacket : Air

Cara kerja:
       Cyclinder block dan cylinder head mempunyai sirip dimana haba panas dari pembakaran campuran di alirkan keluar melalui sirip-sirip dan diserap atau lesap di dalam udara luar

       Sistem penyejukkan udara secara paksa
       Menggunakan blower bagi menghantar udara mengelingi selinder melalui blower housing

16. Terangkan sistem perlinciran dalam injin?
 Tujuan :
        i.            Mengurangkan geseran pada bahagian-bahagian yang bersentuhan.
      ii.            Menyerapkan & memindahkan haba.
    iii.            Membersihkan kekotoran.
    iv.            Bertindak sebagai penyejuk.

17. Terangkan sistem bahanapi dalam injin?
 Tujuan             : Campur bahan api & udara untuk pembakaran

Jenis                : Carburator & Injector.
a.       Carburator       : Petrol
b.      Injector : Diesel

Sistem:
a.       Tekanan Rendah : Fuel dihantar  ke Primary filter oleh Fuel pump terus ke Main filter & ke Fuel Injection Pump.

b.      Tekanan Tinggi : Dari Fuel Injection ke Fuel Injector. Untuk membekalkan fuel tekanan tinggi utk semburan & bahan api didalam cylinder.

18. Bagaimana tatacara menghidupkan injin?
             Periksa buku catitan harian
       Periksa air, diesel dan minyak pelincir
       Periksa belting dan cover dalam keadaan baik
       Periksa paip ekzos tidak bocor
       Periksa bolt tapak dan nut tidak longgar
       Periksa injin coupling tidak longgar
       Periksa meter enjin dalam keadaan baik
       Periksa sambungan dan air bateri
       Periksa radiator tiada kebocoran
       Periksa ACB switch dalam OFF
       Pastikan tiada kerja senggaran dijalankan
       Periksa kawasan sekeliling bersih dan kering
       Pastikan alat keselamatan dalam keadaan baik
       Bunyi siren 2 kali sebelum jalankan injin
       Periksa sekali lagi jika ada masalah
       Buat catitan pada buku harian

19. Apa yang perlu ada di dalam bilik injin?
        Fire alarm
       Smoke detector
       Fire extinguisher jenis CO2
       Carta CPR
       First Aid Box
       Langsir Api

20. Apakah masalah yang sering berlaku pada injin? Apa puncanya?

  1. Injin knocking
  2. Injin gagal dihidupkan
  3. Injin berputar tetapi bahan api tidak terbakar
  4. Injin racing
  5. Injin hunting
  6. Injin bising
  7. Injin panas
  8. Injin keluarkan asap berbeza
21. Kenapa jenis-jenis asap yang dikeluarkan oleh injin?

a.       Asap Putih
b.      Asap Kelabu
c.       Asap Hitam
d.      Asap Kuning
e.       Asap Biru

22. Ceritakan bahagian utama dalam injin?
1)       

23. Nyatakan jenis piston ring? Apa fungsi ring tersebut?
Jenis :
1)      Compression Ring : Utk mengelakkan kebocoran semasa mampatan & semasa fire stroke berlaku.

2)      Oil Ring : Mengikis lebihan minyak pada cylinder.

24. Apakah fungsi governor? Terangkan bagaimana ia berfungsi?

        i.            Mengawal kelajuan engine  : mengawal jumlah bahan api masuk ke dalam engine.Ia bergerak dengan bantuan ‘drive’ dari crankshaft.


25. Nyatakan jenis fuel nozzle?

        i.            Pintle nozzle
      ii.            Multi Hole nozzle
    iii.            Single hole nozzle
    iv.            Pintaux nozzle

26. Apakah fungsi fuel nozzle?
ü  Untuk mengawal kemasukan bahan api ke dalam cylinder.

28. Apakah fungsi flywheel? Terangkan bagaimana ia berfungsi?
 Fungsi : 
a.       Menyimpan daya pusingan.
b.      Memberi keseimbangan dan kestabilan putaran enjin.

30. Nyatakan meter yang terdapat pada injin?
a.       RPM meter
b.      Lube oil temperature/Pressure
c.       Cylinder head temperature/Pressure
d.      Cooler Temperature/Pressure
e.       Level water gauge

31. Nyatakan firing order untuk 6 & 8 selinder injin?
6 selinder : 1,5,3,6,2,4 & 1,2,3,6,4,5
8 selinder : 1,5,2,6,3,7,4,8 & 1,7,3,8,4,6,2,5

32. Apa maksud valve overlapping?
1. Valve inlet & outlet sama-2 terbuka.
2. semasa piston menghampiri TDC
3. pada akhir ekzos stroke.
4. Untuk menyingkir sisa pembakaran & menyedut campuran udara dan bahan bakar yang baru masuk ke selinder.

33. Apa maksud scavenging?
1. Gas ekzos dalam selinder dipaksa keluar.
2.  Campuran bahan bakar dan udara dipaksa masuk ke selinder untuk stroke seterusnya.



36. Apa yang anda faham tentang engine compression ratio?
Nisbah mampatan bermaksud
1. nisbah isipadu selinder pada kedudukan BDC bahagi nisbah isipadu selinder pada kedudukan TDC

37. Apakah punca enjin hunting?
1. Kandungan udara dalam bahan api.
2. Kandungan air dalam bahan api.
3. filter tersumat.
4. Pelinciran tidak sempurna.
5. Pembakaran tidak sempurna.

38. Apakah punca enjin panas?
1. Sistem penyejukan bermasalah.

39. Apakah pun injin tidak boleh dihidupkan?
1. Bahan bakar habis.
2. Bateri.

40. Apakah punca injin boleh hidup tetapi crankshaft tapi tak boleh dijalankan?
1. Timing belt putus. ???soalan pelik.

41. Apakah punca injin racing?
1. Governor rosak.

42. Apakah punca injin bising?
1. Silencer berlubang.
2. Air cock terbuka.
43. Terangkan Otto Cycle?
1. Kaedah thermodynamic untuk menerangkan SI (Spark Ignition) enjin.
An Otto cycle is an idealized thermodynamiccycle that describes the functioning of a typical spark ignition piston engine











44. Terangkan Diesel Cycle?
1. Kaedah thermodynamic untuk menerangkan prinsip engine diesel.
2. Pembakaran bahan bakar disebabkan oleh compressed air pada constant pressure.











45. Nyatakan apa maksud stroke?
1. Pergerakan piston di dalam selinder (BDC ke TDC) atau sebaliknya.
2. A stroke refers to the full travel of the piston along the cylinder, in either direction.















46. Nyatakan komponen utama pada Gas Turbin
1. Compressor
2. Combustor
3. Power turbine









47. Apakah fungsi compressor pada GT?
1. Memampatkan udara
2. kepada tekanan tinggi
3. Menarik udara masuk.

48. Apakah fungsi combustor pada GT?
1. Pembakaran bahan bakar yang sempurna dan menghasil tenaga maksimun.
Function :
—  Provide proper mixing of fuel and air for efficient combustion
Combustor
—  fuel and air are mixed and combust.
Burner system
—  disperse/atomize the fuel
Ignition system
—  ignite the main flame





49. Apakah fungsi turbin pada GT?
1. Menukarkan tenaga haba kepada tenaga kinetic – pusingan.

50. Nyatakan system penyejukkan pada combustor?
1. Jenis
1.1 air-cooled,
1.2 natural air cooled,
1.3 compressed air cooled, and
1.4 water-cooled

2. terangkan salah satu jenis.

51. Apakah fungsi IGV?
The purpose of the inlet guide vanes in a gas turbine is to direct the air-flow to the compressor. By transporting the air at the proper angle the inlet guide vanes ensure most efficient compression.

52. Nyatakan jenis starter pada GT?
1. Diesel engine
2. Elektrik starter
3. Pneumatic starter
4. Gas expansion motor

53. Terangkan lube oil system pada GT?
1. Tujuan : pelincirian bahagian bearing, gearbox, iaitu kawasan metal. Mengelakan kerosakan kepada bearing, gear dan shaft.
2. Jenis lubricant oil : Turbo CC 32
3. Monitor suhu lub oil dan level.

54. Apakah fungsi bleed valve?
1. Untuk mengurangkan tekanan atau air sebelum start up.

55. Apakah tujuan water wash dibuat?
Untuk membersihkan blade.

56. Jika suhu exhaust meningkat semasa GT dioperasikan, apa yang akan berlaku?
1. Sistem penyejuk mempunyai masalah.

57. Bagaimana pengiraan compression ratio bagi GT
 Inlet pressure / Outlet pressure

58. Apakah alat keselamatan yang perlu ada di bilik enjin?
1. First aid
2. Fire extinguhisher.
3. PPE
4. CPR poster.
5. Smoke detector

59. Terangkan jenis pembakaran?
1. Sempurna
2. Lengkap
3. Tak lengkap

60. Apakah 3 unsur komponen pembakaran?
1. Bahan Bakar
2. Udara (Oksigen)
3. Haba

61. Terangkan tentang FMA (Factory Machinery Act 139) 1967?
1. Akta berkenaan kilang & jentera.
2. Keselamatan, kesihatan & kebajikan pekerjaan.
3. Orang yang kompeten dan lesen.
4. Laporan kemalangan dan siasatan.
5.  Pendaftaran kilang dan jentera.

62. Terangkan tentang OSHA (Occoputional Safety & Health) 1994
1. OSHA ditubuhkan untuk menjaga keselamtan & kebajikan pekerja di semua industry di negara.
2. Penubuhan Majlis Keselamatan Negara (MKN).
3. Tugas dan tanggungjawab pekerja dan majikan.
4. Pereka, pembuat dan pembekal jentera.
5. Jawatankuasa keselamatan.
6. Laporan kemalangan, kejadian berbahaya, penyakit pekerjaan.
7. Industry Codes of Practices.
8. Penguatkuasaan & siasatan.
9. Saman & tindakan.

63. Apa beza FMA & OSHA?
1. FMA dikuatkuasa untuk kilang dan jentera sahaja. OSHA dikuatkuasa untuk merangkumi seluruh tempat kerja.

64. Apakah akta yang dikuatkuasakan oleh DOSH /JKKP?
1. Factory & Machinery Act 1967 Act 139.
2. Occupational Safety & Health Act 1994 Act 514.
3. Petroleum (Safety Measures) Act 1984

65. Sebutkan akta yang melibatkan IPD?
Peraturan yang berkaitan dengan Injin Pembakaran Dalam (IPD)
1.      FMA ( Certificate of competency – examination) regulation 1970
2.      FMA (fencing of machinery and safety) regulation 1970
3.      FMA ( Notification, certificate of fitness and inspection) regulation 1970
4.      FMA (noise exposure) regulation 1970
5.      FMA (Safety, Health & Welfare) regulation 1970
6.      FMA (Person In Charge) regulation 1970

66. Apakah contoh kesalahan serius dalam akta FMA?

FMA akta 139, Person Incharge 1970
Regulation 26 mengatakan :
Siji kompetensi digantung kerana salahlaku serius
Keputusan mahkamah yang membuktikan berlaku serius misconduct, makaa senior inspector boleh menggantung sijil untuk tempoh tidak lebih 6 bulan
Misconduct
1.      Tidur semasa bertugas
2.      Mabuk semasa bertugas
3.      Meninggalkan mesin semasa bertugas
4.      Gagal melaporkan kepada majikan sebarang kerosakkan yang boleh membahayakan nyawa dan harta benda yang mana mesin dibawah jagaannya.
5.      Menyebabkan kerosakkanpada mesin atau kecederaan seseorang akibat kecuaian menjalankan mesin tanpa prosedur yang betul serta mengabaikan alat keselamatan yang ada.

67.  Terangkan Person Incharge FMA reg 26
Utk Ice
*500KW-1000KW*
Di jaga oleh Engine drebar gred 2/Shif
Jila terdapat lebih drpd 1 engine, mesti di bantu oleh engine drebar gred 2 yg mencukupi pd setiap shif.
*1000KW - 5000KW*
Di jaga oleh Engine drebar gred 1/shif.
jika terdapat Lebih 1 engine, mestilah di bantu oleh engine drebar gred 2 yg mencukupi pd setiap shif.
Kena lantik Jurutera pelawat gred dua
*5000KW-25000KW*
Di jaga oleh jurutera gred dua.
Di bantu oleh engine drebar gred 1 yg mencukupi pd setiap shif.
*25000KW-50000KW*
Di jaga oleh jurutera gred satu.
Di bantu oleh jurutera gred dua /shif dan bilangan drebar gred 1 yg mencukupi/shif
*Lebih 50000KW*
Di jaga oleh jurutera gred satu.
Di bantu oleh jurutera gred dua/shif dan bilangan engine drebar gred satu yg mencukupi /shif.

68. Prosedur start up Gas Turbin.
    


69. Terangkan operasi Gas Turbin menggunakan gambar rajah.
  
 70. SOP
1. Shutdown

71. HIRARC
72. NADOPOD
72. Gas turbine flow

73. Trip system
74. Purging Sequence
75. Beza Gas turbine dan Diesel engine
76. Initial startup Gas turbine,kenapa turbine berpusing dan apa tujuan?

SELAMAT MAJU JAYA.



Soalan Oral Enjin Pembakaran Dalam / ICE

$
0
0
1. Apa maksud Enjin?
-kumpulan2 komponen yg dipasang mengikut urutan.
-mengubah tenaga haba kpd tenanga mekanikal
-bergerak mengikut aturan.

2. Apa beza internal (ICE) & external combustion engine (ECE)?
-ICE : pembakaran berlaku di dalam kebuk pembakaran @ chamber.
-ECE: pembakaran berlaku di ..luar chamber.
-cth:
ICE : Gas Turbine
ECE: Stim turbine

3. Nyatakan komponen utama pada injin?
a) Cylinder head
b) Cylinder Block
c) Sump
d) Piston
e) crankshaft
f) cam shaft

4. Terangkan Operasi 2 stroke petrol enjin?

Induction 
  • Inlet port tutup
  • Scavenging port terbuka
  • Memaksa campuran gas daripada Crank chamber.
Compression
  • Piston bergerak: BDC Ke TDC
  • Scavenging berlaku utk membersihkan chamber dan allowed fresh to enter
Firing stroke
  • Piston naik utk menambah tekanan.
  • Injector spray fuel, berlaku combustion/explosion.
Exhaust stroke
  • Tekanan akan menolak piston ke bawah akibat firing.
  • Exhaust port terbuka dan buang gas, pada waktu yg sama udara bersih akan masuk.
5. Terangkan Operasi 4 stroke petrol enjin?
Induction 
  • Inlet valve buka.
  • Exhaust valve tertutup
  • Piston bergerak TDC ke BDC.
  • Memaksa udara masuk (180 darjah)
Compression
  • Piston bergerak: BDC Ke TDC
  • Valve Inlet & Exhaust tertutup. 
  • Udara dimampat,volume kurang.
  • Crank shaft pd kedudukan 360 darjah.
Firing stroke
  • Valve Inlet & Exhaust tertutup. 
  • Palam pencucuh (spark plug) percikan maka berlaku pembakaran disebabkan oleh piston sampai ke TDC.
  • Piston ditolak ke bawah.
Exhaust Stroke
  • Valve Inlet tutup & Exhaust terbuka. 
  • Piston naik ke atas sampai ke TDC & menolak gas keluar melalui exhaust valve.
  • Pusingan 720 darjah & berakhirlah 1 kitaran.
6. Terangkan Operasi 2 stroke diesel enjin?

Induction 
  • Inlet port tutup
  • Scavenging port terbuka
  • Injector memaksa campuran diesoline daripada Crank chamber.
Compression
  • Piston bergerak: BDC Ke TDC
  • Scavenging berlaku utk membersihkan chamber to allowed fresh to enter
Firing stroke
  • Piston naik utk menambah tekanan.
  • Injector spray fuel, berlaku explosion.
Exhaust stroke
  • Tekanan akan menolak piston ke bawah akibat firing.
  • Exhaust port terbuka dan buang gas, pada waktu yg sama udara bersih akan masuk.

7. Terangkan Operasi 4 stroke diesel enjin?

Induction 
  • Inlet valve buka.
  • Exhaust valve tertutup
  • Piston bergerak TDC ke BDC.
  • Memaksa udara masuk (180 darjah)
Compression
  • Piston bergerak: BDC Ke TDC
  • Valve Inlet & Exhaust tertutup. 
  • Udara dimampat,volume kurang.
  • Crank shaft pd kedudukan 360 darjah.
Firing stroke
  • Valve Inlet & Exhaust tertutup. 
  • Injector spray fuel, berlaku pembakaran disebabkan oleh piston sampai ke TDC.
  • Piston ditolak ke bawah.
Exhaust Stroke
  • Valve Inlet tutup & Exhaust terbuka. 
  • Piston naik ke atas sampai ke TDC & menolak gas keluar melalui exhaust valve.
  • Pusingan 720 darjah & berakhirlah 1 kitaran.
8. Terangkan Operasi Rotary Engine?

1.      Beroperasi sama seperti enjin berpiston tetapi bebas dari kelemahan/masalah komponen-komponen bergerak.
2.      Prinsip utama dimana rotor yang mempunyai 3 lobe, drive shaft dan casing.
3.      Rotor berputar di dalam kebuk pembakaran berbentuk ‘epitrochoidally’, ketiga-tiga hujung lobe bersentuh dengan bahagian dalam kebuk, lalu membentuk 3 kebuk yang mengandungi isipadu berlainan. 
4.      Dalam setiap kebuk akan berlaku proses mampatan, masukan, kuasa serta ekzos. Masukan/sedutan
5.      Apabila rotor berputar C.W injap masukkan akan terdedah dan isipadu kebuk akan bertambah menyebabkan ‘depression’, lalu campuran bahan api dan udara aka dipaksa masuk kedalam kebuk pada tekanan atmosfera.

9. Nyatakan Perbezaan antara 2 stroke dan 4 stroke injin?
Bil
Pergerakan
4 stroke
2 stroke
1
Power
2 pusingan crankshaft 720 deg
1 pusingan crankshaft 360 deg
2
Kuasa untuk isipadu selinder yang sama
Kecil
1.5 lebih besar dari 4 stroke
3
Valve
Ada
Tiada
4
Pembinaan
Mahal
Murah
5
Kecemaran spark plug
Sikit
Banyak
6
Penggunaan bahan api
Sedikit
Banyak
7
Penggunaan minyak
Sedikit
Banyak
8
Keburukkan
Sedikit
Banyak
9
Kestabilan kendalian
Tinggi
Rendah
10
Keteguhan
baik
Baik

10. Nyatakan Perbezaan antara diesel dan petrol injin?

Keterangan
Enjin Diesel
Enjin Petrol
-          Jenis bahan api
-          Minyak diesel
-          Minyak Petrol
-          Sistem pembakaran

-          Nisbah mampatan

-         Komponen pembakaran

-          Operasi




-         Kesesuaian
-          Kuasa dan saiz
-          Compression ignition


-          Tinggi


-          Injector


-          Sesuai untuk kelajuan seragam, lambat bertindak balas terhadap perubahan beban dan kelajuan tinggi


-          Sesuai untuk enjin bersaiz besar, untuk kenderaan tugas dan industri
-          Rendah – enjin bersaiz lebih besar untuk kuasa yang sama
-          Spark ignition


-          Rendah


-          Spark plug


-         Sesuai untuk kelajuan seragam, cepat bertindak balas terhadap perubahan beban dan kelajuan enjin

-          Sesuai untuk enjin dan kenderaan bersaiz sederhana dan kecil
-          Tinggi – enjin dengan saiz yang lebih kecil

11. Terangkan perbezaan antara carburetor dan fuel injection?

Carburetor       : Udara bercampur dengan bahan api.

Fuel Injector    : Menyemburkan bahan api.

12. Terangkan perbezaan antara turbocharger dan supercharger?

Turbocharger              : Digerakkan oleh Exhaust.
                                : Berpusing dengan lebih pantas disebabkan tidak bersambung  dengan engine.
                                    : Spinning rate : 15,000 rpm (depend model)

Supercharger    : Digerakkan oleh Crankshaft.
                           : Bersambung terus dengan enjin through belt.
                                    : Spinning rate : 50,000rpm.

13. Terangkan Hubungkait antara
crankshaft dan camshaft?

1.      Camshaft dipusing oleh Crankshaft menggunakan timing belt @timing chain.
2.      Camshat lebih laju (rpm) berbanding crankshaft.

14. Terangkan Hubungkait antara piston dan valve?

1.      Pengerakan piston menentukan buka tutup valve. Piston gerakkan crankshaft. Crankshaft gerak camshaft. Camshaft tentukan buka tutup valve.

15. Terangkan sistem penyejukkan dalam injin?
 Tujuan:
       Mengawal suhu enjin daripada terlalu panas
       Untuk memajukan pengewapan bahan api dan menjaga minyak pada kelikatan terbaik

Jenis:  Fins & Water Jacket
a.       Fin : udara
b.      Water Jacket : Air

Cara kerja:
       Cyclinder block dan cylinder head mempunyai sirip dimana haba panas dari pembakaran campuran di alirkan keluar melalui sirip-sirip dan diserap atau lesap di dalam udara luar

       Sistem penyejukkan udara secara paksa
       Menggunakan blower bagi menghantar udara mengelingi selinder melalui blower housing

16. Terangkan sistem perlinciran dalam enjin?
 Tujuan :
             i.            Mengurangkan geseran pada bahagian-bahagian yang bersentuhan.
              ii.            Menyerapkan & memindahkan haba. (haba pendam tentu/latent heat, Q)
             iii.            Bertindak sebagai penyejuk.
iv.        Membersihkan kekotoran.



17. Terangkan sistem bahanapi dalam enjin?
 Tujuan             : Campur bahan api & udara untuk pembakaran

Jenis                : Carburator & Injector.

a.       Carburator         : Petrol
b.      Injector               : Diesel

Sistem:
a.       Tekanan Rendah : Fuel dihantar  ke Primary filter oleh Fuel pump terus ke Main filter & ke Fuel Injection Pump.

b.      Tekanan Tinggi : Dari Fuel Injection ke Fuel Injector. Untuk membekalkan fuel tekanan tinggi utk semburan & bahan api didalam cylinder.

18. Bagaimana tatacara menghidupkan enjin diesel/petrol?
                   Periksa buku catitan harian
       Periksa air, diesel dan minyak pelincir
       Periksa belting dan cover dalam keadaan baik
       Periksa paip ekzos tidak bocor
       Periksa bolt tapak dan nut tidak longgar
       Periksa injin coupling tidak longgar
       Periksa meter enjin dalam keadaan baik
       Periksa sambungan dan air bateri
       Periksa radiator tiada kebocoran
       Periksa ACB switch dalam OFF
       Pastikan tiada kerja senggaran dijalankan
       Periksa kawasan sekeliling bersih dan kering
       Pastikan alat keselamatan dalam keadaan baik
       Bunyi siren 2 kali sebelum jalankan injin
       Periksa sekali lagi jika ada masalah
       Buat catitan pada buku harian

19. Apa yang perlu ada di dalam bilik injin?
                   Fire alarm
       Smoke detector
       Fire extinguisher jenis CO2
       Carta CPR
       First Aid Box
       Langsir Api

20. Apakah masalah yang sering berlaku pada injin? Apa puncanya?
  1. Enjin knocking
  2. Injin gagal dihidupkan
  3. Injin berputar tetapi bahan api tidak terbakar
  4. Injin racing
  5. Injin hunting
  6. Injin bising
  7. Injin panas
  8. Injin keluarkan asap berbeza

21. Kenapa jenis-jenis asap yang dikeluarkan oleh injin?

a.       Asap Putih
b.      Asap Kelabu
c.       Asap Hitam
d.      Asap Kuning
e.       Asap Biru

22. Ceritakan bahagian utama dalam injin?
                  Description: C:\Users\User\Pictures\enjin komponen utama.png     

23. Nyatakan jenis piston ring? Apa fungsi ring tersebut?
Jenis :
1)        Compression Ring :
Utk mengelakkan kebocoran semasa mampatan & semasa fire stroke berlaku.

2)      Oil Ring : membersihkan lebihan minyak pada cylinder.

24. Apakah fungsi governor? Terangkan bagaimana ia berfungsi?

i.                    Mengawal kelajuan engine  : mengawal jumlah bahan api masuk ke dalam engine. Ia bergerak dengan bantuan ‘drive’ dari crankshaft.
ii.                  Untuk keselamatan enjin apabila overspeed berlaku.
Description: C:\Users\User\Pictures\governor.png

25. Nyatakan jenis fuel nozzle?

1.                  Pintle nozzle
2.                  Multi Hole nozzle
3.                  Single hole nozzle
4.                  Pintaux nozzle

26. Apakah fungsi fuel nozzle?
1.      Untuk mengawal kemasukan bahan api ke dalam cylinder.
2.      Atomize fuel untuk persediaan pembakaran.

28. Apakah fungsi flywheel? Terangkan bagaimana ia berfungsi?
            Fungsi : 
a.                     Menyimpan daya pusingan / tork.
b.                     Memberi keseimbangan dan kestabilan putaran enjin.

30. Nyatakan meter yang terdapat pada enjin?
a.       RPM meter
b.      Lube oil temperature/Pressure
c.       Cylinder head temperature/Pressure
d.      Cooler Temperature/Pressure
e.       Level water gauge

31. Nyatakan firing order untuk 6 & 8 selinder injin?
6 selinder : 1,5,3,6,2,4            &         1,2,3,6,4,5
8 selinder : 1,5,2,6,3,7,4,8      &         1,7,3,8,4,6,2,5

32. Apa maksud valve overlapping?
1. Valve inlet & outlet sama-2 terbuka.
2. semasa piston menghampiri TDC
3. pada akhir ekzos stroke.
4. Untuk menyingkir sisa pembakaran & menyedut campuran udara dan bahan bakar yang baru masuk ke selinder.

33. Apa maksud scavenging?
1. Gas ekzos dalam selinder dipaksa keluar.
2.  Campuran bahan bakar dan udara dipaksa masuk ke selinder untuk stroke seterusnya.









36. Apa yang anda faham tentang engine
compression ratio?
Nisbah mampatan bermaksud
1. nisbah isipadu selinder pada kedudukan BDC bahagi nisbah isipadu selinder pada kedudukan TDC

37. Apakah punca enjin hunting?
1. Kandungan udara dalam bahan api.
2. Kandungan air dalam bahan api.
3. filter tersumat.
4. Pelinciran tidak sempurna.
5. Pembakaran tidak sempurna.

38. Apakah punca enjin panas?
1.      Sistem penyejukan bermasalah.
2.      Sistem lubricant bermasalah.

39. Apakah pun injin tidak boleh dihidupkan?
1. Bahan bakar habis.
2. Bateri.
3. Masalah electrical.

40. Apakah punca injin boleh hidup tetapi crankshaft tapi tak boleh dijalankan?
1. Timing belt putus. ???soalan pelik.

41. Apakah punca enjin racing?
1. Governor rosak.

42. Apakah punca injin bising?
1. Silencer berlubang.
2. Air cock terbuka.

43. Terangkan Otto Cycle?
1. Kaedah thermodynamic untuk menerangkan SI (Spark Ignition) enjin.
An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine
Description: https://2.bp.blogspot.com/-yJFl2IoGDiE/WTmaHvMRg2I/AAAAAAAAnB0/Za-pxrBkKcEVAOo9Tpf4_humtUXZYsmpwCLcB/s320/OTTO%2BCYCLE.jpg

44. Terangkan Diesel Cycle?
1. Kaedah thermodynamic untuk menerangkan prinsip engine diesel.
2. Pembakaran bahan bakar disebabkan oleh compressed air pada constant pressure.
Description: https://3.bp.blogspot.com/-HyOptdSLHr8/WTma9iHtiTI/AAAAAAAAnB8/GAsW8qSTrEcQbpMmge5vy75XhXZLKYAPwCLcB/s320/otto%2Bvs%2Bdiesel.png

45. Nyatakan apa maksud stroke?
1. Pergerakan piston di dalam selinder (BDC ke TDC) atau sebaliknya.
2. stroke refers to the full travel of the piston along the cylinder, in either direction.
Description: https://1.bp.blogspot.com/-wWjoEk-aSm8/WTmbw_aKVII/AAAAAAAAnCE/kxhkb5YEuAMNJgXTl_AwzTXbdVxzJqBDwCLcB/s320/bdc%2Btdc.png

46. Nyatakan komponen utama pada Gas Turbin
1. Compressor
2. Combustor
3. Power turbine
4. Ehaust
Description: https://1.bp.blogspot.com/-YXrgYmjshBQ/WTmdHy3M--I/AAAAAAAAnCQ/JtdzB1BPO0kEN2CnNtW3ltyG5_BvE0TSQCLcB/s320/gas%2Bturbine%2Bmajor%2Bcomponents.png

Description: https://1.bp.blogspot.com/-n-wGmUXqvJE/WTmdH1vZu_I/AAAAAAAAnCM/4aTFQV0GOgk6FLPmjqf8a7BGCtxhlLyTwCLcB/s320/gas%2Bturbine.png
47. Apakah fungsi compressor pada GT?
1. Memampatkan udara
2. kepada tekanan tinggi
3. Menarik udara masuk.

48. Apakah fungsi combustor pada GT?
1. Pembakaran bahan bakar yang sempurna dan menghasil tenaga maksimun.
Function :
  Provide proper mixing of fuel and air for efficient combustion
Combustor
  fuel and air are mixed and combust.
Burner system
  disperse/atomize the fuel
Ignition system
  ignite the main flame
Description: https://3.bp.blogspot.com/-g1P4SUIlyy4/WTmfi42pJuI/AAAAAAAAnCg/Y5bHArp6oS4i93JTq6-BRSvlP9J-S1zeQCLcB/s320/combustor3.png

Description: https://4.bp.blogspot.com/-F7M5KdQUMKg/WTmffE5kQLI/AAAAAAAAnCc/pv_LNGxxDAAFJMUksuaqZHKIpXbai-6WgCLcB/s320/combustor%2B2.png

Description: https://4.bp.blogspot.com/-PRH5LJ9qHJI/WTmfn0f1IcI/AAAAAAAAnCs/WbcAtDFzKEECdlL99WJ5lF34olGPcinPQCLcB/s320/combustor%2B3.png

Description: https://2.bp.blogspot.com/-1eVKJj4CeJ8/WTmfn_rROOI/AAAAAAAAnCo/j7yUe0wETzIbH1gt_z9HDslhkoHeBMCugCLcB/s320/gt%2Bcombustor1.png

Description: https://4.bp.blogspot.com/-2qbmQ4-F3-I/WTmfmW4NtpI/AAAAAAAAnCk/DkAbmpFk56ApULUV4cIzmejJTimrLxPJQCLcB/s320/gt%2Bcombustor.png

49. Apakah fungsi turbin pada GT?
1. Menukarkan tenaga haba kepada tenaga kinetic – pusingan.

50. Nyatakan system penyejukkan pada combustor?
1. Jenis
1.1 air-cooled,
1.2 natural air cooled,
1.3 compressed air cooled, and
1.4 water-cooled

2. terangkan salah satu jenis.

51. Apakah fungsi IGV?
The purpose of the inlet guide vanes in a gas turbine is to direct the air-flow to the compressor. By transporting the air at the proper angle the inlet guide vanes ensure most efficient compression.
Description: https://2.bp.blogspot.com/-ACc-mr1L0nQ/WTmhfMNvfeI/AAAAAAAAnC4/Brt-sIdBbCIuijXbRd6dSt5Fkv6-df2dwCLcB/s320/igv%2Bgt.png

52. Nyatakan jenis starter pada GT?
1. Diesel engine
2. Elektrik starter
3. Pneumatic starter
4. Gas expansion motor

53. Terangkan lube oil system pada GT?
1. Tujuan : pelincirian bahagian bearing, gearbox, iaitu kawasan metal. Mengelakan kerosakan kepada bearing, gear dan shaft.
2. Jenis lubricant oil : Turbo CC 32
3. Monitor suhu lub oil dan level.
        
54. Apakah fungsi bleed valve?
1.      Untuk mengurangkan tekanan atau udara sebelum start up.
2.      Untuk mengelakkan surging semasa start up / shut down.

55. Apakah tujuan water wash dibuat?
Untuk membersihkan blade. Online / offline. Kekerapan Ikut keadaan udara, fuel, kecekapan GT.

56. Jika suhu exhaust meningkat semasa GT dioperasikan, apa yang akan berlaku?
1. Sistem penyejukan mempunyai masalah.
2. Combustor bermasalah. Pembakaran berlaku di bahagian exhaust. Nozzle.

57. Bagaimana pengiraan compression ratio bagi GT
 Inlet pressure / Outlet pressure

58. Apakah alat keselamatan yang perlu ada di bilik enjin?
1. First aid
2. Fire extinguhisher.
3. PPE
4. CPR poster.
5. Smoke detector

59. Terangkan jenis pembakaran?
1. Sempurna
2. Lengkap
3. Tak lengkap

60. Apakah 3 unsur komponen pembakaran?
1. Bahan Bakar
2. Udara (Oksigen)
3. Haba

61. Terangkan tentang FMA (Factory Machinery Act 139) 1967?
1. Akta berkenaan kilang & jentera.
2. Keselamatan, kesihatan & kebajikan pekerjaan.
3. Orang yang kompeten dan lesen.
4. Laporan kemalangan dan siasatan.
5.  Pendaftaran kilang dan jentera.

62. Terangkan tentang OSHA (Occoputional Safety & Health) 1994
1. OSHA ditubuhkan untuk menjaga keselamtan & kebajikan pekerja di semua industry di negara.
2. Penubuhan Majlis Keselamatan Negara (MKN).
3. Tugas dan tanggungjawab pekerja dan majikan.
4. Pereka, pembuat dan pembekal jentera.
5. Jawatankuasa keselamatan.
6. Laporan kemalangan, kejadian berbahaya, penyakit pekerjaan.
7. Industry Codes of Practices.
8. Penguatkuasaan & siasatan.
9. Saman & tindakan.

63. Apa beza FMA & OSHA?
1. FMA dikuatkuasa untuk kilang dan jentera sahaja. OSHA dikuatkuasa untuk merangkumi seluruh tempat kerja.
2. FMA lebih penguatkuasaan oleh DOSH. OSHA lebih kepada self regulation.

64. Apakah akta yang dikuatkuasakan oleh DOSH /JKKP?
1. Factory & Machinery Act 1967 Act 139.
2. Occupational Safety & Health Act 1994 Act 514.
3. Petroleum (Safety Measures) Act 1984

65. Sebutkan akta yang melibatkan IPD?
Peraturan yang berkaitan dengan Injin Pembakaran Dalam (IPD)
1.      FMA ( Certificate of competency – examination) regulation 1970
2.      FMA (fencing of machinery and safety) regulation 1970
3.      FMA ( Notification, certificate of fitness and inspection) regulation 1970
4.      FMA (noise exposure) regulation 1970
5.      FMA (Safety, Health & Welfare) regulation 1970
6.      FMA (Person In Charge) regulation 1970



66. Apakah contoh kesalahan serius dalam akta FMA?

FMA akta 139, Person Incharge 1970
Regulation 26 mengatakan :
Siji kompetensi digantung kerana salahlaku serius
Keputusan mahkamah yang membuktikan berlaku serius misconduct, makaa senior inspector boleh menggantung sijil untuk tempoh tidak lebih 6 bulan
Misconduct
1.      Tidur semasa bertugas
2.      Mabuk semasa bertugas
3.      Meninggalkan mesin semasa bertugas
4.      Gagal melaporkan kepada majikan sebarang kerosakkan yang boleh membahayakan nyawa dan harta benda yang mana mesin dibawah jagaannya.
5.      Menyebabkan kerosakkan pada mesin atau kecederaan seseorang akibat kecuaian menjalankan mesin tanpa prosedur yang betul serta mengabaikan alat keselamatan yang ada.

67.  Terangkan Person Incharge FMA reg 26
Utk Ice
*500KW-1000KW*
Di jaga oleh Engine drebar gred 2/Shif
Jila terdapat lebih drpd 1 engine, mesti di bantu oleh engine drebar gred 2 yg mencukupi pd setiap shif.
*1000KW - 5000KW*
Di jaga oleh Engine drebar gred 1/shif.
jika terdapat Lebih 1 engine, mestilah di bantu oleh engine drebar gred 2 yg mencukupi pd setiap shif.
Kena lantik Jurutera pelawat gred dua
*5000KW-25000KW*
Di jaga oleh jurutera gred dua.
Di bantu oleh engine drebar gred 1 yg mencukupi pd setiap shif.
*25000KW-50000KW*
Di jaga oleh jurutera gred satu.
Di bantu oleh jurutera gred dua /shif dan bilangan drebar gred 1 yg mencukupi/shif
*Lebih 50000KW*
Di jaga oleh jurutera gred satu.
Di bantu oleh jurutera gred dua/shif dan bilangan engine drebar gred satu yg mencukupi /shif.

68. Prosedur start up Gas Turbin.
    


69. Terangkan operasi Gas Turbin menggunakan gambar rajah.
  
 70. SOP
1. Shutdown

71. HIRARC
72. NADOPOD
72. Gas turbine flow

73. Trip system
74. Purging Sequence
75. Beza Gas turbine dan Diesel engine
76. Initial startup Gas turbine, kenapa turbine dipusing dan apa tujuan?

77. Beza gas turbin vs steam turbin?
Perbezaan
3.      Pembakaran : ICE/EPD vs ECE / Enjin pembakaran luar.
4.      Fuel : Gas vs depend boiler (gas, cecair, pepejal) – stim dihasilkan untuk gerakkan turbine.
5.      Turbine digerakkan oleh hot gas vs steam.
6.      Starter : ada dan tiada.
7.      Material turbine rotor, stator : Lebih tahan panas/lebih tahan haba.
8.      Compressor : ada vs tiada.


SELAMAT MAJU JAYA.




Boiler Drum

Boiler Drum

Gas Turbine Bleed Valve

$
0
0
Compressor bleed valve is a preventive measure of compressor soaking and compressor surging



Taman Syurga

$
0
0
Nabi bersabda,
إِذَا مَرَرْتُمْ بِرِيَاضِ الْجَنَّةِ فَارْتَعُوا قَالُوا وَمَا رِيَاضُ الْجَنَّةِ قَالَ حِلَقُ الذِّكْرِ
“Jika kalian melewati taman syurga maka berhentilah. 
Mereka bertanya,”Apakah taman syurga itu?” 
Beliau menjawab,”Halaqoh dzikir (majlis Ilmu). 
(Riwayat At-Tirmidzi)

Rasulullah صَلَّى اللهُ عَلَيْهِ وَسَلَّمَ bersabda.
وَمَا اجْتَمَعَ قَوْمٌ فِي بَيْتٍ مِنْ بُيُوتِ اللَّهِ يَتْلُونَ كِتَابَ اللَّهِ وَيَتَدَارَسُونَهُ بَيْنَهُمْ إِلاَّ نَزَلَتْ عَلَيْهِمُ السَّكِينَةُ وَغَشِيَتْهُمُ الرَّحْمَةُ وَحَفَّتْهُمُ الْمَلاَئِكَةُ وَذَكَرَهُمُ اللَّهُ فِيمَنْ عِنْدَهُ وَمَنْ بَطَّأَ بِهِ عَمَلُهُ لَمْ يُسْرِعْ بِهِ نَسَبُهُ
“Tidaklah suatu kaum berkumpul di satu rumah Allah, mereka membacakan kitabullah dan mempelajarinya, 
kecuali turun kepada mereka ketenangan, dan rahmat menyelimuti mereka, 
para malaikat mengelilingi mereka dan Allah memuji mereka di hadapan makhluk yang ada didekatnya.
Barangsiapa yang kurang amalannya, maka nasabnya tidak mengangkatnya.
(Riwayat Muslim)

Kepimpinan adalah kritikal di plant demi keselamatan

$
0
0
1. Keselamatan, tanggungjawab besar seorang jurutera.
2. Keselamatan jiwa, harta benda dan bumi.

Aeroplane Gas Turbine

Tanks with Gas Turbin

Perbezaan FMA vs OSHA

$
0
0
Keterangan
FMA
OSHA
SKOP
Keselamatan, kebajikan & Kesihatan pekerja serta mesin
Hanya pada mesin


Termasuk orang luar
Tak termasuk
SUASANA PEKERJAAN
Psikologi dan kehendak pekerja
Tidak berkaitan
UNDANG - UNDANG
Asas undang – undang dan kod industry, data
Tidak berkaitan

Ringkas
lengkap

Self regulation
Enforcement

Soalan Oral Peperiksaan Jurutera Enjin Pembakaran Dalam / ICE DOSH

$
0
0
Soalan–soalan Peperiksaan Oral

1. Apa itu enjin?
Enjin adalah alat dimana campuran udara dan bahan api yang tercampur akan terbakar, terdapat IPD dan IPL

2. Apa itu enjin pembakaran dalam dan pembakaran luar?
Berikan contoh setiap satu dan kegunaannya
IPD – Pembakaran berlaku di dalam combustion chamber; eg. G.T – untuk menjana kuasa elektrik, enjin kapal terbang., Enjin Diesel – sebagai ‘prime mover’ dan menjana elektrik.

IPL – Pembakaran berlaku di luar combustion chamber; eg. S.T – untuk menjana elektrik, Boiler – untuk tujuan pemanasan di loji.

3. Namakan jenis enjin mengikut penggunaan bahan bakar?
Enjin Diesel dan Enjin Petrol

4. Apakah perbezaan di antara enjin petrol dan diesel?
Keterangan
Enjin Diesel
Enjin Petrol
Jenis Bahan Api
Sistem Pembakaran
Komponen Pembakaran
Nisbah Mampatan
Masalah berkaitan b/api
Campuran b/api & udara
Operasi
Kos bahanapi
Kesesuaian kerja
Diesel
Compression Ignition
Injector
Tinggi ; 10-20 :1
B/api terbakar semasa mampatan – tiada masalah auto-ignition
Didalam silinder
Utk kelajuan seragam, lambat bert/balas pada perubahan kelajuan dan beban enjin
Agak murah
Sesuai utk enjin besar & kengeraan besar & tugas berat
Petrol
Spark Ignition
Spark Plug
Rendah ; 5-10 :1
Paras ‘auto-ignition yang rendah, menghadkan Nisbah Mampatan
Diluar silinder – carburetor
Sesuai untuk kelajuan seragam dan tak seragam. Cepat bert/balas dengan perubahan beban & kelajuan enjin.
Mahal sedikit
Enjin kecil & sederhana

5. Kelaskan dua jenis enjin mengikut pusing perjalanan masing-masing?
Enjin 4 lejang dan 2 lejang

6. Apakah perbezaan di antara enjin 2 lejang dan 4 lejang?
Keterangan
2 - Lejang
4 - Lejang
Penghasilan tenang
Rekabentuk Enjin
2 pergerakkan piston untuk menghasilkann 1 kitar (cycle) tenaga
Ringkas, sesuai untuk enjin kecil tidak mempunyai injap tetapi
4 pergerakkan piston untuk menghasilkann 1 kitar (cycle) tenaga
Komplek serta sesuai utk enjin sederhana dan besar.
2
Keekapan Enjin
Pengeluaran Asap
‘ports’untuk mengawal udara masuk dan ekzos sahaja.. Hanya mempunyai injap keluar.
Rendah, berlakunya campuran bahanapi baru dengan udara /asap ekzos
Sukar dielakkan
Mempunyai injap masukkan dan ekzos.
Agak tinggi jika ditune kan dengan betul
Kurang jika ditune kan dengan betul

7. Ada berapa cara bagi menghidup enjin?
• Sistem menggunakan udara
• Sistem Hidraulik
• Motor Elektrik

8. Sebuah enjin dapat dibahagikan kepada bahagian yang tidak bergerak, namakan bahagian tersebut?
• Engine Frame
Cylinder Block Sumps (Wet/Dry) Access Openings End Plates End Plate Covers Crankshaft Evacuation System (Eductor/Vacuum pump)
• Covers
• Cylinder liner-(Dry/Wet)
• Cylinder Heads
• Engine mounts

9. Sebuah enjin dapat dibahagikan kepada bahagian yang bergerak, namakan bahagian tersebut?
• Crankshaft
• Connecting Rods-(conventional/Fork & Blade)
• Piston pins
• Piston-crown,trunk,ring grooves,piston boss
• Piston rings-(compression/oil control)
• Camshaft
• Operating gear- cam followers, push rod, rocker arm, valve bridge.

10. Apa itu cylinder head? Namakan komponen-komponen yang terdapat didalam cylinder head?
Suatu bahagian dari enjin yang boleh ditanggalkan, mengandungi kesemua atau sebahagian dari kebuk pembakaran yang menutup selinder. Ia juga mengandungi injap,dan water jacket atau cooling fins (air cooled engines).

Komponen – komponen yang terdapat didalam sylinder head;
• Fuel Injector
• Inlet Valve
• Exhaust Valve
• Air Starting Valve
3
• Air Relif Valve
• Indicator Cock

11. Apa itu enjine block? Namakan komponen-komponen yang terdapat didalam enjine block?

Main support piece for basic engine part. Komponen – komponen yang terdapat didalam enjine block;
• Selinder
• Camshaft
• Crankshaft
• Oil passage
• Water passage

12. Apa itu crankshaft?
Satu keeping besi yang ditempa /forging yang berfungsi sebagai main rotating member /shaft. Gunanya untuk menukarkan gerakan piston dan connecting rod dari gerakan turun naik kepada gerakan memusing. Ia dipasangkan dalam kotak khas dalam crankcase, Crankcase journal dialas oleh main bearings dan berpusing diatasnya melakukan kerja yang disampaikan oleh piston dan connecting rod.

13. Apa itu cylinder?
Merupakan badan utama sesuatu enjin dimana piston akan bergerak (reciprocates) untuk menghasilkan kuasa. Mesti mampu menahan tekanan (70 bar)dan suhu tinggi (2200 C). Maka material yang digunakan diperbuat dari bahan cast iron atau alloy steel. Kadang kala bagi enjin kerja berat dan bagi memudahkan maintenance, sleeves atau liners disemat (insert) pada selinder. Ia dapat di tukarkan apabila mengalami worn out. Liner diperbuat dari nikel chrome iron.

14. Apa itu piston head/crown?
Bahagian atas piston.

15. Apa itu ring? Dan namakan jenis-jenis ring dan apa fungsi ring tersebut?
Gegelang / ring yang berada dibahagian atas piston dan dipasang pada ring grooves. Jenis – jenis ring;
• Compression ring
• Oil ring
Berfungsi sebagai;
• seal gas pembakaran dalam kebuk pembakaran
• Pengaliran haban daripada piston ke dinding selinder
• Menyampaikan minyak pelincir ke dindin selinder dengan samarata dan mengikis minyak yang berlebihan dipermukaan cylinder liner
• Mengelakkan minyak pelincir yang berlebihan terbakar dari gas pembakaran.

16. Apakah itu inlet dan exhaust valve?
Inlet Valve – Membenarkan udara memasuki kedalam selinder melaluinya.
Exhaust Valve – Membenarkan gas hasil dari pembakaran dipaksa keluar melaluinya.

17. Apakah fungsi camshaft?
Berbentuk eccentric yang dipanggil cams. Mengawal pergerakan valves.

18. Apa itu valve overlapping atau stroke overlapping? Bile berlakunya dan mengapa perlu kepada overlapping?
4 Tempoh putaran aci engkol ketika injap masukkkan serta injap okzos terbuka bersama-sama dan hanya akan berlake semasa PMA.

19. Apakah fungsi governor (pengawal imbangan)?
• Mengelakkkan ‘overspeed’
• Mengekalkan laju enjin yang sekata tanpa menghiraukan perubahan beban.

20. Apakah firing order bagi enjin :-
a. Empat silinder – 1, 3, 4, 2 atau 1, 2, 3, 4
b. Enam silinder – 1, 5, 3, 6, 2, 4 atau 1, 4, 2, 6, 3, 5 atau 1, 4, 2, 6, 3, 5
c. Lapan silinder (straight enjine) – 1, 5, 2, 6, 8, 4, 7, 3 atau 1, 7, 3, 8, 4, 6, 2,5

21. Apakah tugas-tugas seorang pengendali loji?
• Jangan tinggalkan logi unattended
• Melaksanakan arahan jurutera
• Maintain
- Paras dan suhu air
- Amphere, Rpm
- Tekanan serta paras minyak selinder
- Tekanan Serta paras minyak pelincir
- Suhu eksos
- Bekalan Bateri
• Memastikan logi dalam keadaan selamat
• Simpan rekod bekalan & pengunaan fuel
• Melakukan pemeriksaan berkala
• Selalu lakukan visual inspect keadaan jentera
• Kemaskan buku log jentera
- Rekodkan data loji serta kejadian luar biasa
- Penyelenggaraan dilakukan pada setiap shift

22. Apakah tindakan anda sekiranya berlaku kebakaran di tempat kerja?
Tenang, dan bertindak , secara rasional. Sekiranya kebakaran berlaku kita hendaklah pastikan jenis kebakaran tersebut agar langkah memadan api yang sesuai boleh dijalankan. Sekiranya berlaku kemalangan, pastikan orang yang cedera diberi pertolongan yang bersesuaian disamping itu langkah yang perlu juga harus diambil agar penjalanan enjin tidak terjejas.

23. Apakah tujuan anda menghadiri temuduga ini?
Mengikut akta 29(2a), sesiapa yang menjaga operasi mesin IPD mesti mempunyai sijil kekompetenan seperti mana yang dikehendaki oleh JKKP.

24. Sewaktu loji sedang beroperasi, anda terdengar satu letupan yang kuat. Terangkan tindakan anda yang selanjutnya.
Sama seperti no. 51

25. Apakah yang anda faham tentang OSHA dan FMA?
OSHA – Occaputional Safety and Health Act (Akta Keselamatan dan Kesihatan Pekerjaan) Dikuatkuasakan pada tahun 1994, meliputi FMA, skop yang lagi luas. OSHA 1994, Akta – undang2 yang harus dipatuhi dan diluluskan oleh Parlimen. Kandungan termasuk keperluan pekerja berkompeten, tugas2 pengendali, pemeriksaan berjadual, salah laku sewaktu bertugas, kejadian2 merbahaya
FMA – Factory and Machinery Act (Akta Kilang dan Jentera). Diwartakan tahun 1967, mempunyai 15 peraturan. Akta139, 1967: Akta untuk mengawal perkara2 berkenaan dengan keselamatan, kesihatan & kebajikan pekerja, pendaftaran dan pemeriksaan peralatan jentera dan perkara yang berkenaan dengannya.

26. Apakah perbezaan antara OSHA dan FMA?
Keterangan
OSHA
FMA
Perlindungan
Suasana Pekerjaan
Undang-undang
Keselamatan, Kebajikan & Kesihatan pekerja serta mesin
Termasuk orang luar
Saikologi dan kehendak pekerja
Asas Undang2 dan kod industri, data
Ringkas
Bergantung kepada industri/ kilang
Hanya pada mesin sahaja
Tidak termasuk
Tidak wujud
Tidak wujud
Terlalu detail
Banyak bergantung kepada penglibatan kerajaan

27. Apakah WPS atau PTW?
WPS – Welding Procedure Specification
PTW – Permit To Work

28. Apakah jenis-jenis IPD yang tidak memerlukan Drebar Enjin?
• Dipasang di jentera pengangkut
• Tidak melebihi 40 hp
• Enjin menggunakan karburator

29. Apakah jenis-jenis IPD yang tidak tertakluk di bawah Akta?
• Enjin untuk menggerakan kenderaan
• Peralatan yang digerakkan secara ‘manual’ kecuali ‘hoist’
• Mesin serta peralatan persenderian untuk kegunaan persendirian
• Peralatan pejabat

30. Apakah tugas-tugas seorang Enjine Driver?
• Memastikan injin sentiasa dioperasikan dengan selamat dan efisien.
• Memastikan injin disenggarakan dengan sempurna apabila tiba masanya.
• Membuat laporan kepada pihak berkuasa sekiranya berlaku “Kejadian-kejadian Merbahaya”.
• Mengelakkan diri dari melakukan kesalahan-kesalahan serius sewaktu bertugas (Serious Misconduct)

31. Apakah kejadian-kejadian merbahaya di dalam FMA?
• Kemalangan yang menyebabkan kematian.
• Kemalangan yang menyebabkan kecederaan serius dan mangsa tidak dapat bertugas selama 4 hari berturut-turut.
• Kejadian yang menyebabkan kerosakan serius pada mesin / enjin.
• Roda pengimbang atau lain-lain bahagian yang berputar pada mesin / enjin pecah atau terlerai.
• Kerosakan struktur yang menyebabkan krin, hoist, mesin dll. runtuh.
• Letupan, kebakaran dsb. yang menyebabkan timbul keraguan terhadap tahap keselamatan struktur, mesin / enjin dan lain-lain.

32. Apakah perbuatan-perbuatan yang menyalahi tatakerja yang serius dalam FMA?
• Tidur
• Mabuk atau kurang sedar
• Meninggalkan mesin / enjin tanpa pengawasan
• Gagal membuat laporan kerosakan mesin / enjin yang serius
• Kelalaian yang menyebabkan kerosakan serius pada mesin / enjin

33. Jelaskan apakah aspek-aspek keselamatan dan kesihatan yang perlu ada di tempat bertugas?
Ruang kerja yang bersih dan teratur. Alat dan pakaian keselamatan yang sesuai, cahaya dan gantian udara yang cukup termasuk mempunyai escape route.

34. Apakah jenis kemalangan yang mesti dilaporkan kepada JKKP mengikut Akta Kilang dan Jentera 1967?
• Kemalangan yang menyebabkan kematian.
• Kemalangan yang menyebabkan kecederaan serius dan mangsa tidak dapat bertugas selama 4 hari berturut-turut.
• Kejadian yang menyebabkan kerosakan serius pada mesin / enjin.
• Roda pengimbang atau lain-lain bahagian yang berputar pada mesin / enjin pecah atau terlerai.
• Kerosakan struktur yang menyebabkan krin, hoist, mesin dll. runtuh.
• Letupan, kebakaran dsb. yang menyebabkan timbul keraguan terhadap tahap keselamatan struktur, mesin / enjin dan lain-lain.

35. Apakah tindakan seharusnya dilakukan sekiranya berlaku kebakaran dan kemalangan di logi anda bekerja?
Tenang, dan bertindak , secara rasional. Sekiranya kebakaran berlaku kita hendaklah pastikan jenis kebakaran tersebut agar langkah memadan api yang sesuai boleh dijalankan. Sekiranya berlaku kemalangan, pastikan orang yang cedera diberi pertolongan yang bersesuaian disamping itu langkah yang perlu juga harus diambil agar penjalanan enjin tidak terjejas.

36. Apakah kapasiti maxima IPD yang boleh dikendalikan oleh seorang enjine driver Grade 1 dan 2?
Gred 1 => 100 hp tapi < 500 hp, Gred 1 => 40 hp tetapi < 100hp

37. Berapakah masa interval untuk pemeriksaan JKKP ke atas mesin-mesin di kilang anda?
15 bulan bagi jentera ber permit (PMD, PMA, PMT) tetapi tidak bagi jentera IPD hanya jurutera berkelayakan memberitahu JKKP akan masa pemeriksaan akan dibuat. Terpulang kepada JKKP untuk menghadirkan diri.

38. Namakan komponen-komponen utama Tarbin Gas dan jelas fungsi-fungsi komponen-komponen utama tersebut.
• Pemampat (Compressor)
Udara dari persekitaran disedut masuk dan dimampatkan kesuatu tekanan tinggi
Jenis-jenis pemampat:
i. Jenis Aliran Radial
ii. Aliran Axial
• Kebuk Pembakaran (Combustor)
Udara yang termampat disalurkan ke K.P Pembakaran akan berlaku pada tekanan tetap. Ia beroperasi pada suhu yang sangat tinggi.
Jenis-jenis kebuk pembakaran:
i. Kebuk Tunggal (Single Can)
ii. Cannister atau Can-Annular
iii. Ring atau Annular
• Tarbin (Turbine)
Gas Panas disalurkan ke tarbin dan kerja pun terhasil, gas panas setelah melalui tarbin akan dibebaskan ke atmosfera.
39. Jelaskan perbezaan-perbezaan di antara Tarbin Gas dengan enjin berpiston.
Keterangan
Tarbin Gas
Enjin Disel
1. Berat / Saiz / H.p terjana
2. Kos Pemasangan dan Operasi
3. Kecekapan
4. Balancing
5. Torque terjana
6. Sistem pelinciran & ignition
Kurang
Rendah
Tinggi
Tepat
Sekata
Mudah
Lebih
Tinggi
Rendah
Tidak tepat
Tidak sekata perlu kepada ‘flywheel”
Rumit

40. Apakah kebaikan-kebaikan Loji Tarbin Gas berbanding dengan Loji Disel / Stim?
Keterangan
Loji Tarbin Gas
Loji Disel / Stim
1. Berat / Saiz / H.p terjana
2. Mula tugas ‘Start Up’ ke ‘full power’
3. Kecekapan
4. Masa pembinaan ‘construction time’
Lebih
Cepat (1/2 jam)
Combine Cycle Tinggi (55%)
Pendek
Kurang
Lambat
L. Stim (47%), L. Disel (40%)
Lama
5. Pindah
6. Pengoperasian dan Selenggara
7. Kebolehharapan
8. Penghasilan Bunyi
9. Pemasangan & penggantian peralatan
Mudah
Mudah
Tinggi
Senyap
Lebih modular dan senang
Payah lagi Rumit
Payah
Rendah
Agak Bising
Tidak modulat dan payah

41. Apakah kebaikan Kebuk Pembakaran jenis “multi-can” berbanding dengan Kebuk Tunggal (Single-can) ?
• K. P. ‘multi can’ terdiri lebih dari satu burner dimana jika berlaku satu burner mengalami kerosakkan G.T. masih boleh digunakan.
• Pembakarannya adalah lebih lengkap.
• Strukturnya lebih kuat kerana ia terdiri dari ‘frame member’ G.T.

42. Apakah jenis Tarbin Gas yang kamu kendalikan ?
• Jenis Industri (Kerangka Berat)

43. Apakah kebaikan Kebuk Pembakaran jenis “multi-can” berbanding dengan Kebuk Tunggal (Single-can) ?

44. Apakah fungsi “Blow-Off Valve” dan “Diffuser” ?
• Blow-Off Valve / Bleed-Off Valves
Berfungsi untuk melindungi pemampat dari “surging” dan ‘stall’ (aliran udara kedalam pemampat terganggu) sewaktu mula-tugas dan henti-tugas.
• Diffuser
Berfungsi untuk memperlahankan aliran gas panas (ekzos) di samping mengarahkannya (divert) ke laluan yang dikehendaki dengan cara yang selamat.
Apabila udara disedut masuk kedalam G.T, ia akan melalui bilah boleh gerak dan bilah pegun (ini yang membentuk sebahagian dari compressor). Bilah yang bergerak berbentuk lengkung pada kawasan masukkan udara akan memandu udara masuk pada kelajuan tinggi lalu udara tersebut akan diperlahankan pada gelang bilah pegun. Gelang ini yang disebut ‘difusser’.

45. Senaraikan pepasangan atau sistem perlindungan yang terdapat pada Tarbin Gas.
• Sistem Melawan Kebakaran (Fire Fighting System)
• “Emergency Stop” atau “Trip System”
• “Over-temperature protection”
• “Over-speed protection”
• “Compressor Protection”, “Bleed Valves” atau “Blow-off Valves”

46. Apakah kegunaan turbin gas?
• Enjin Pesawat Udara & Helikopter
• Enjin Kapal
• Penjanaan Elektrik
• Pemacu Pam, Pemampat dsb.

47. Berapa lejang yang terdapat pada tarbin gas?
Tidak mempunyai lejang kerana pembakarannya adalah berterusan ‘continous’.

48. Kenapa tarbin gas termasuk dalam IPD tetapi tarbin stim tidak?
Tiada pembakaran berlaku didalam tarbin stim. Kerana kuasa kerjanya (stim) datang dari boiler.

49. Terangkan jenis-jenis shaft yang berlainan untuk turbin gas?
i. Single Shaft
• Satu shaft memandu compressor dan beban (load)
• Payah mula tugas memendangkan keseluruhan enjin disambungkan secara mekanikal kepada ‘drive train’.
• Akan beroperasi secara ifficien pada kelajuan constant
• Digunakan dalam GTGS (gas turbine generator system)
ii. Split Shaft
• Kompresor dan gas generator turbine berkongsi satu shaft
• Tarbin kuasa di decoupled dan memusingkan shaft keluaran berasingan
• Bhg. Gas generator tidak mengalami kesan dengan perubahan beban pada generator
• Sesuai digunakan pada beban yang selalu mengalami perubahan serta kelajuan.
• Kuasa di coupled pada kompresor
• Membolehkan dedua-dua shaft beroperasi pada kelajuan efficient (laju tak sama)
iii. Twin Spool Shaft
• Gas generator shaft sebenarnya shaft tekanan rendah yang berputar didalam hollow high-pressure shaft.
• Mempunyai kompresor dua peringkat, yang mana setiap satu diputarkan oleh tarbin berasingan.
• Lebih besar dan rumit dari enjin split shaft.

50. Apakah perbezaan antara turbin gas jenis aeroderivative dan jenis kerangka berat?
Aeroderivative
Industri
• Asal enjin dari enjin pesawat udara
• Ringan (specific weight rendah)
• Kecekapan lebih tinggi
• Mudah untuk penyelengaraan kerana pembuatan yang compact dan modular
• Menggunakan bearing jenis ball/roller
• Struktur badan yang lebih nipis
• Pengunaan kebuk pembakaran selain jenis single/double can
• Memerlukan kualiti bahanapi yang baik
• Dibina untuk kegunaan tetap di darat
• Berat (specific weight tinggi)
• Kecekapan lebih rendah
• Sukar untuk penyelengaraan kerana pembuatan untuk penggunaan lasak
• Menggunakan bearing jenis journal
• Struktur badan yang lebih tebal
• Boleh menggunakan kebuk pembakaran jenis single/double can
• Boleh menggunakan bahanapi yang lebih berat

51. Berikan 2 contoh kaedah pengawalan NOx pada tarbin gas?
i. Dengan menyuntik stim ke dalam zon pembakaran dapat mengurangkan suhu gas dan nyalaan ‘flame’ dapat menghalang pembentukan tak terkawal NOx sehingga 80%.
ii. sdsd

52. Apakah perkara-perkara keselamatan yang paling penting semasa “walkdown” ke atas tarbin gas?

53. Mengapa tarbin gas tidak mempunyai no. pendaftaran?
Tekanan yang terhasil tidak dikumpulkan/disimpan dalam tarbin gas, maka ia tidak dikelaskan sebagai kebuk bertekanan.

54. Bagaimanakah kita mengawal quantiti angin yang masuk kedalam pemampat untuk tarbin gas?
‘Air Intake System’ mengawal kuantiti serta kualiti udara yang memasuki ke dalam G.T. Antara komponen yang memainkan peranan adalah;
• Louvers dan Demisters
Mengasingkan air serta bendasing dari memasuki kedalam system masukkan udara.
• ‘Blows’ pada pintu
Akan terbuka apabila aliran udara memasuki system masukkan terhalang.

55. Apakah kebaikan-kebaikan Enjin Disel?
• Ia membakar bahan bakar lagi kurang kadarnya dari enjin petrol bagi kadar kerja yang sama.
• Ia tidak mempunyai system ignition.
• Ia mampu menghasilkan lebih kuasakuda yang sepatutnya pada kadar berterusan lagi tetap dari enjin petrol.
• Jangka hayat enjin diesel lebih panjang jika dibandingkan dengan enjin petrol.
• Bahan api diesel tidak akan meletup tetapi hanya akan terbakar.

56. Terangkan prinsip operasi enjin 4-lejang.
4 lejang diperlukan untuk melengkapkan satu kitar lengkap enjin.
Lejang Masuk
Ketika injap masuk terbuka dan injap ekzos tertutup, omboh bergerak dari PMA ke PMB lalu menghasilkan tekanan yang rendah didalam silinder. Udara bersih akan menyerbu masuk ke dalam silinder, selinder akan dipenuhi udara.
Lejang Mampatan
Ketika injap masuk dan injap okzoz tertutup, ombah bergerak dari PMB ke PMA lalu memampatkan udara menyebabkan udara menjadi panas sehingga mencapai suhu yang amat tinggi untuk mencucuyh bahan api.
Lejang kuasa
Ketika omboh hamper ke PMA, bahan api dipancitkan/semburkan kedalam udara termampat yang panas. Campuran ini akan tercucuh, terbakar lalu mengembang. Kedua-dua injap masih tertutup. Tekanan bertindak pada kepala omboh lalu memaksanya bergerak menuruni silinder dari kedudukan PMA ke PMB.
Lejang Ekzos
Ketika omboh hamper sampai ke PMB, injap ekzos akan terbuka dan omboh mulai bergerak dari PMB ke PMA. Dengan itu gas yang terbakar dipaksa keluar dari silinder menerusi injap ekzos yang terbuka.
Sesudah lengkapnya lejang okzos, injap ekzos akan tertutup manakala injap masuk akan terbuka. Omboh akan bergerak kebawah bagi memulakan lejang masuk seterusnya.

57. Terangkan prinsip operasi enjin 2-lejang.
2 lejang diperlukan untuk melengkapkan satu kitar lengkap enjin.
Menghapus sisa
Ketika injap okzos (berada didalam kepala silinder) berkeadaan terbuka, dan puncak omboh berada di bawah liang, udara dari penghembus dialirkan ke dalam silinder. Pusaran udara menghala ke liang ekzos mampu memaksa gas yang terbakar keluar dari silinder dan memastikan silinder dipenuhi dengan udara bersih.
Lejang Mampatan
Apabila omboh bergerak ke PMA, injap okzos akan tertutup dan omboh akan manutupi liang pengambilan. Udara yang termampat didalam silinder semakin dimampatkan semasa omboh bergerak ke PMA.
Lejang kuasa
Sejurus sebelum PMA, iaitu ketika lejang mampatan, bahan api akan disemburkan kedalam udara yang sangat panas. Campuran ini akan memacu omboh bergerak ke PMB. Bagaimanapun, sebelum sampai ke PMB. Injap ekzos akan terbuka dan tekanan silinder menyusut, Ini menandakan berakhirnya lejang kuasa.
Lejang Ekzos
Sebaik sahaja injap ekzos terbuka, gas yang terbakar akan dialirkan melalui liang ekzos ke dalam system ekzos. Apabila Omboh membuka liang pengambilan, proses menghapuskan sisa pam pun bermula untuk membersihkan silinder daripada kandungan gas terbakar.

58. Terangkan mengenai Sistem Penyejukan enjin yang kamu kendalikan.
Kebanyakkan enjin adalah ‘liquid cooled’. Enjin mempunyai banyak bukaan/ruangan yang dipanggil ‘water jacket’ yang mengelilingi selinder dan ‘combustion chamber’. Pam ‘coolant’ yang dijalankan oleh enjin akan ‘circulates’ cecair ‘coolant’ melali ‘water jacets’ ‘Coolant’ tersebut akan membawa bersama-sama haba dan terus ke ‘radiator’. Air yang melalui ‘radiator’ akan membawa bersama ‘excess heat’ yang akan menghalang enjin dari ‘overheating’. Pada kebiasaanya ‘coolant’ akan mengalir dari ‘water pump’ melalui blok selinder dan terus ke ‘head’ lalu masuk ke ‘radiator’ dari bahagian atas. Bahagian – bahagian penting;
• Water jacket
• Water pump
• Thermostat
• Radiator
• Fan

59. Apakah fungsi “Turbo-charger”?
Suatu alat yang menggunakan gas eksos yang terhasil dari enjin untuk dihembus/sedut masuk kembali ke dalam enjin. Tambahan udara tersebut akan di bekalan dengan bahan api tambahan dengan bantuan ECU (engine control unit). Ini akan menyebabkan enjin menghasilkan lebihan tenaga. Dimana enjin tanpa turbo terpaksa menyedut masuk udara masuk tanpa apa-apa bantuan. Dengan adanya turbo, udara akan dipaksa masuk kedalam kebuk pembakaran dengan tekanan positif maka lebihan bahan bakar juga akan tersedut. Enjin turbo akan menghasilkan 7 - 10 psi tekanan positif maksima atau ‘boost’. ‘Turbo charger’ pada kebiasannya dipasang terus pada ‘exhaust manifold’, dimana gas eksos akan melalui satu shaft yang terpasang bilah tarbin. Pada sebelah lain shaft terdapat pemampat / compressor tarbin, yang menyedut masuk udara luaran masuk melalui penapis udara lalu menyembur ke intake manifold. Maka, tenaga dari eksos terbuang yang mana pada kebiasaanya dibuang akan diguna kembali, iaitu disedut masuk semula kedalam enjin.

60. Apakah fungsi “Governor”?
Berfungsi sebagai pengawal kelajuan enjin dengan mengawal jumlah bahan api masuk kedalam enjin. Ia bergerak dengan bantuan ‘drive’ dari crankshaft. Ia dapat dikelaskan mengikut perinsip kerja:
• Mekanikal – centrifugal
o Laju tetap
o Kesemua kelajuan
o Laju mengehad
• Pneumatik
• Hidraulik
• Elektronik.

61. Apakah fungsi “Flywheel”?
Merupakan suatu roda yang dipasang pada ‘crankshaft’ dimana lebihan tenaga yang terhasil semasa lejang kuasa disimpan. Semasa lejang – lejang yang lain ia akan mengembalikan tenaga yang tersimpan tersebut lalu mengimbangi daya kilas keluaran secara tetap pada crankshaft (maintain momentum of the flywheel)

62. “Flywheel” enjin yang sedang kamu kendalikan tiba-tiba tercabut keluar, jelaskan tindakan-tindakan yang akan kamu ambil.

63. Apakah enjin pembakaran dalam yang tidak termasuk dalam Akta Kilang dan Jentera?
I.P.D termasuk didalam akta. Peraturan 29(2a)

64. Berikan contoh-contoh kegunaan enjin pembakaran dalam?

65. Apakah fungsi ‘Crankshaft’?
Merupakan tulang belakang kepada enjin.

66. Apakah fungsi ‘Piston’?
Piston besama-sama piston ring berfungsi bagi memampat campuran bahanapi serta udara semasa lejang mampatan dan untuk memindahkan kuasa/tenaga ke ‘connecting rod’ dan kemudian ke ‘crank’ semasa lejang kuasa. Merupakan jantung kepada enjin.

67. Terangkan jenis-jenis governor untuk IPD?
• Mekanikal
Penambahan daya empar dengan kelajuan putaran digunakan untuk menyediakan kawalan imbang. Pengawal imbang jenis ini terdiri daripada jenis laju malar, semua laju atau laju penghehad.
• Pneumatik (Udara)
Menggunakan tekanan pancarogga salur masuk yang berubah untuk mangawal aliran bahan api pam. Ia terdiri daripada dua bahagian berasingan iaitu unit pengawal imbang yang dipasang pada pam pancitan, dan unit venturi atau pendikit yang dipasang pada pancarongga salur masuk.
• Electronik
Bertindak balas terhadap pemboleh ubah lain seperti suhu ambient, galak pengecag turbo, suhu bahan api untuk mengekal ketepatan kawalan laju dan mengurangkan keluaran ekzos.
• Hidraulik
Ia mengawal bahan api secara menambah atau mengurangkannya untuk mengekalkan laju enjin pada paras yang ditetapkan.

68. Berpakah nisbah mampatan bagi enjin disel dan ingin petrol?
Enjin Diesel : 10 – 20 :1 manakala Enjin Petrol 5 -10 : 1

69. Apakah yang dimaksudkan dengan nisbah mampatan sesebuah enjin berpiston?
Nisbah mampatan adalah nisbah di antara isipadu silinder apabila piston berada pada kedudukan BDC dibahagikan dengan isipadu silinder apabila piston berada pada kedudukan TDC. Nisbah mampatan yang tinggi memberikan enjin yang lebih cekap. Ia merupakan nisbah campuran udara dan bahanapi yang dimampatkan semasa lejang mampatan.

70. Apakah dia “firing order”?
Aturan dimana enjin silinder ‘fires’ atau menghasilkan lejang kuasa, bermula dari silinder No. 1.

71. Terangkan dengan jelas maksud Top Dead Center (TDC) dan Bottom Dead Center BTC?
TDC merupakan kedudukan tertinggi yang boleh dicapai oleh piston didalam selinder manakala BTC merupakan kedudukan terendah yang boleh dicapai oleh piston didalam selinder.

72. Bagaimanakah pengiraan saiz cc pada enjine berpiston?
Isipadu selinder dikira dengan mendarab luas bore selinder dengan jarak selinder (panjang/jarak stroke). The bore area is calculated as follows:
Bore Area = Bore x Bore x pi / 4. (pi has a value of 3.14159)
Contoh; Bore = 8.1cm, stroke = 8.64cm.
Luas bore = 8.1 x 8.1 x 3.14159 / 4 = 51.53 square cm.
Isipadu 1 selinder = luas bore darab stroke = 51.53 x 8.64 = 445.22 cc
Ada 4 selinder dalam suatu enjin = 445.22 x 4 = 1780.88 cc

73. Terangkan perbezaan antara enjin bentuk sebaris menegak, bentuk V dan bentuk mendatar (boxer engine) dan bentuk radial?

74. Terangkan perjalanan sebuah enjin “rotary”?
Beroperasi sama seperti enjin berpiston tetapi bebas dari kelemahan/masalah komponen2 berpiston( kurang komponen bergerak). Perinsip utama adalah rotor yang mempunyai 3 lobe, drive shaft dan casing. Apabila rotor berputar didalam kebuk pembakaran berbentuk ‘epitrochoidally’, ketiga-tiga hujung lobe masih lagi bersentuh dengan bahagian dalam kebuk, lalu membentuk 3 kebuk yang mengandungi isipadu berlainan. Dalam setiap kebuk akan berlaku proses mampatan, masukkan, kuasa serta eksos.
Masukkan/Sedutan.
Apabila rotor berputar C.W, injap masukkan akan terdedah dan isipadu kebuk akan bertambah menyebabkan ‘depression’, lalu campuran bahan api dan udara akan dipaksa masuk kedalam kebuk pada tekanan atmosfera.
Mampatan
Rotor akan terus berputar, menutup port masukkan lalu memampatkan ‘charge’ dengan mengurangkan isipadu didalam kebuk seperti di B dan C.
Kuasa
Apabila bahagian tengah BC melepasi ‘spark plug’, charge akan ‘ignited’ lalu menyebabkan letupan berlaku lalu memaksa rotor beputar C.W dan memutarkan juga ‘driveshaft’.
Eksos
Rotor masih lagi berputar dibawah tekanan gas-gas yang mengembang ‘apex’ rotor akan ‘communicate’ dengan port eksos (CA) dan gas akan meninggalkan kebuk dibawah tekanan mereka sendiri. Putaran rotor selanjutnya akan mengurangkan isipadu dalam kebuk dan gas akan dipaksa keluar melalui port eksos. Kitaran akan menyusul seterusna memandangkan port masukkan ditutup oleh rotor.

75. Apakah yang anda faham tentang “normal aspirated” untuk sistem udara masuk bagi enjin berpiston”?
Biasa terdapat pada enjin diesel 4 lejang dimana udara bagi pembakaran akan masuk secara ‘natural’ akibat wujudnya ‘vacuum’ didalam silinder apabila bergerak dari TDC ke BDC. Julat kecekapan volumetric adalah diantara 65 – 85%. Kecekapan volumetric akan berkurangan dengan bertambahnya kelajuan enjin.
1. CRANKING:
• Tarbin Gas perlu dibantu untuk mula berputar samada menggunakan ‘Starter Motor / Cranking Motor" atau ‘Generator’ (bagi yang menggunakan sistem SFC) sehingga mencapai kelajuan yang sesuai sebelum bahanapi dimasukkan.
• Cranking juga bertujuan untuk "purging", iaitu mengeluarkan gas-gas yang terperangkap didalam bahagian-bahagian Tarbin Gas. Gas-gas yang terperangkap ini boleh menyebabkan kemungkinan berlakunya letupan.
• Bergantung kepada rekabentuk Tarbin Gas, ianya akan diputarkan sehingga mencapai 50% -70% kelajuan operasi (Contoh 1,500 rpm - 2,000 rpm bagi Tarbin Gas yang kelajuan operasinya 3,000 rpm). Pada kelajuan ini, bahanapi akan dimasukkan ke dalam Kebuk Pembakaran dan dinyalakan (IGNITION).
• Kelajuan putaran Tarbin Gas akan terus dikawal oieh Starter Motor, Cranking Motor atau Generator (mengikut rekabentuknya) sehingga mencapai 90% - 95% kelajuan operasi.
• Selepas Tarbin Gas mencapai kelajuan yang sepatutnya, barulah "Governor Valve" mengambil alih tugas mengawal kelajuan Tarbin Gas.
2. PEMBAKARAN:
• Proses pembakaran (ignition) sebagaimana dinyatakan di atas berlaku di peringkat ‘Cranking’.
NOTA : Haba panas dari Kebuk Pembakaran seterusnya disalurkan ke Tarbin. Tarbin berperanan untuk menukarkan tenaga haba (dari gas panas) kepada tenaga mekanikal untuk memutarkan mesin lain, generator dsb.
3. FULL - SPEED - NO - LOAD (FSNL):
• Ini adalah peringkat di mana tarbin gas telah mencapai kelajuan yang dikehendaki tetapi masih belum menerima beban (load)
4. ‘SYNCHRONIZING’
• Selepas peringkat ‘FSNL’ dan Tarbin Gas berada dalam keadaan stabil, ia akan dihubungkan kepada "Grid" atau talian bekalan kuasa. Proses ini dikenali sebagai ‘Synchronizing’.
5. MENAIKKAN BEBAN - "LOADING"
• Seterusnya, beban akan ditingkatkan secara berperingkat sehingga mencapai tahap beban yang dikehendaki.

76. Apakah “Purging”?
Bertujuan untuk mengeluarkan sisa-sisa bahanapi atau gas dari Kebuk Pembakaran. Mestilah dilakukan terlebih dahulu sebelum bahanapi dimasukkan kedalam kebuk pembakaran. Boleh menyebabkan letupan sekiranya diabaikan.

77. Apakah “Scavenging”?
Adalah proses dimana gas eksos dalam kebuk dikeluarkan dengan pengisian udara segar kedalam kebuk/selinder. Ini adalah sangat mustahak supaya pembakaran sempurna dapat berlaku pada pusingan (cycle) akan datang.

78. Namakan jenis-jenis maintenance inspection untuk tarbin gas dan jelaskan secara ringkas?
• Combustion Inspection
Pemeriksaan yang dilakukan ke atas bahagian combustor seperti combustion linear, transition piece, burner nozzles dll
• Hot gas path inspection
Pemeriksaan yang dilakukan ke atas bahagian combustor dan tarbin seperti tarbin nozzles, blades bearing, shell dll
• Major Inspection
Pemeriksaan yang dilakukan secara menyeluruh keatas semua bahagian compressor, combustor tarbin dll
Pemeriksaan ini dilakukan untuk mengenal pasti kesan kerosakkan seperti erosion, corrosion, overheating, crack dll untuk membaik pulih atau menggantikan bahagian-bahagian yang rosak tersebut supaya pengendalian tarbin boleh dilakukan pada tahap optimum.

79. Bagaimana ingin menentukan bahawa tarbin gas sudah mencapai masanya untuk di”overhaul”?
Mengikut ‘runnig hours’ sepertimana ditetapkan oleh manufacturer.

GE Gas Turbine

Pembakaran @ Combustion


Introduction to the Palm Oil Industry

$
0
0
1.1 Historical Background.

The oil palm, Elaeis guineensis Jacq. is indigenous to West Africa where the main palm belt ran from Sierra Leone, Liberia, the Ivory Coast, Ghana and Cameroon to the equatorial regions of the Republics of Congo and Zaire. (Hartley, 1988). The development of oil palm as a plantation crop started in the South East Asia; the first introduction of the African oil palm was four seedlings from Mauritius and Amsterdam that were planted in the Botanic Gardens in Bogor in 1848. The first commercial oil palm plantation was established in Sumatra, Indonesia by M. Adrien Hallet, a Belgian agronomist with interests in the Belgian Congo (Zaire). The development of the industry in Malaysia is attributed to Frenchman, Henri Fauconnier and his association with Hallet. In 1911, Fauconnier visited Hallet’s oil palm development in Sumatra and had purchased some oil palm seeds and these were planted at his Rantau Panjang Estate in Selangor. He returned to Sumatra the following year to obtain seeds that he had selected together Hallet from Tanjong Morawa Kiri Estate for further planting. With seedlings obtained from the 1911 and 1912 importation, Fauconnier established the first commercial oil palm planting at Tennamaram Estate, to replace an unsuccessful planting of coffee bushes (Tate, 1996).

In their analyses of the palm oil industry in Malaysia, Gray (1969) and Harcharan Singh (1976) classified the development of the industry in Peninsular Malaysia into three distinct phases, starting with the experimental phase from the late 1800s early 1900 to 1916 while the plantation development phase commenced in 1917 with Tennamaram Estate until about 1960. The expansion phase from the 1960s was the response to the Government’s diversification policy to reduce the dependence of the national economy on natural rubber, which had faced declining prices and competition from synthetic rubber. Following the recommendation of the World Bank Mission in 1955, the Government decided to promote the planting of oil palm. A key driver for this effort was the Federal Land Development Authority (Felda) which was established in 1956 with the socio-economic responsibility of developing plantation land for the rural poor and landless.

The palm oil industry has since undergone two further phases, from 1970 with the expansion of large scale planting in Sabah and Sarawak and from around 1995 when Malaysian extended their upstream operations off-shore, particularly to Indonesia where is there is adequate supply of workers and availability of land for plantation development and cost of production is lower than in Malaysia. 

1.2 The Oil Palm

Elaeis guineensis Jacq. which is commonly known as the oil palm is the most important species in the genus Elaeis which belongs to the family Palmae. The second species is Elaeis oleifera (H.B.K) Cortes which is found in South and Central America and is known as the American oil palm. Although significantly lower in oil-to-bunch content than its African counterpart, E. oleifera has a higher level of unsaturated fatty acids and has been used for production of interspecfic hybrids with E. guineensis. The oil palm is an erect monoecious plant that produces separate male and female inflorescences. Oil palm is cross-pollinated and the key pollinating agent is the weevil,

Elaeidobius kamerunicus Faust. In the past, oil palm was thought to be wind pollination and owing to the low level of natural pollination, assisted pollination is a standard management practice in plantations. However, this practice was discontinued following the discovery that oil palm was insect pollinated and the introduction of E. kamerunicus from the Cameroons, West Africa in 1982 (Syed et al, 1982). Harvesting commences about 24 to 30 months after planting and each palm can produce between eight to 15 fresh fruit bunches (FFB) per year weighing about 15 to 25 kg each, depending on the planting material and age of the palm (Plate 1). Each FFB contains about 1000 to 1300 fruitlets; each fruitlet consists of a fibrous meoscarp layer, the endocarp (shell) which contains the kernel (Plate 2). Present day planting materials are capable of producing 39 tonnes of FFB per ha and 8.6 tonnes of palm oil and actual yields from good commercial plantings are about 30 tonnes FFB per ha with 5.0 to 6.0 tonnes oil (Henson. 1990). At the national level, the average FFB yield in 2001 was 19.14 tonnes while palm oil productivity was 3.66 tonnes per ha.

Cultivars or races of E. guineensis can be differentiated by their fruit pigmentation and characteristics; the most common cultivars being the Dura, Tenera and Pisifera which are classified according to endocarp or shell thickness and mesocarp content. Dura palms have 2-8mm thick endocarp and medium mesocarp content (35%-55% of fruit weight), the tenera race has 0.5-3mm thick endocarp and high mesocarp content of 60%-95% and the pisifera palms have not endocarp and about 95% mesocarp (Latiff, 2000).

The four palms that were planted in the Botanic Gardens in Bogor in 1848 were duras; their seeds were the origin of the famous Deli dura palms that were established in Deli district in Sumatra in 1881 (Hartley,1988). The Deli duras provided the foundation for development of planting materials used by the industry in Malaysia and other oil palm growing countries. As pisifera palms are predominantly female sterile, they cannot be exploited for commercial planting. They are instead used for crossing with the dura palm to produce the tenera (DxP) hybrid (Plate 3) after M. Beirnaert discovered the single gene inheritance of shell thickness in 1939 in the then Belgian Congo (Zaire) (Hartley, 1988). This discovery was the cornerstone for the industry and it paved the way for breeding and selection and production of high yielding DxP planting materials. 
Plate1:Freshfruitbunches(FFB)
Plate2:Crosssectionofafruitlet
Plate3:Productionoftenera(DxP)plantingmaterial

Traditionally, breeding of oil palm has focusedon yield improvement, in termsof FFBand oilcontent,slowheightincrement,oilqualityanddiseasetolerance.Currently,theindustryishasplacedemphasisontheproductionofthefollowingtypesofplantingmaterialstomeetindustryandmarketneeds(Rajanaiduetal,2000):
 ·         Developmentofdwarfpalms(PSItype)toreducethepalmheightincrementandsignificantlyextendtheeconomiccroppingcycle.
·         Breedingforhighunsaturatedoil(Highiodinevalue)(PS2type)toproducematerialswithhigherproportionsofunsaturatedfattyacidsbycrosseswithhighiodinevalueNigeriandurasandEguineensisxE.oleiferahybrids.
·         Breedingforhighlauricoil(PS3type)usinghighyieldingNigeriandurapalmswithhighkernelcontents
·         Breeding forhigh carotenoidcontent (PS4 type)– usingselectedNigeriandurasand pisiferasaswellashybridisationwithE.oleifera.

AscurrentDxPplantingmaterialsderivedfromseedshaveahighlevelofvariation,severalcompaniesundertookresearchonproductionofclonalpalmsinthe1980s.Thisresearchwasbasedonthepremisethatyieldscanbeincreasedbyabout30%withclonesderivedfromelitepalmsinaDxPpopulation(Hardonetal,1987).However,commercialproductionofcloneswashamperedbythediscoveryofabnormalfloweringbehaviour(Corleyetal,1986)andtheresearch effortwasdivertedtoovercomingtheoccurrenceofabnormalitiesinpalmclones. A few companies haveplanted clonal palms on acommercial andoneof them,PPBOilPalmsBerhadhadobtainedveryencouragingresults.Theirearliestclonalplantinghadproduceda31%increaseinFFBperhaand54%improvementinoilyieldcomparedtoconventionalDxPmaterialsduringtheinitialsevenyearsofproduction(Siburatetal,2002).

Thepalmoilindustryhasalsoembarkedongeneticengineeringwork;theprimarystrategyoftheMalaysianPalmOilBoard(MPOB)is toproducetransgenic oilpalmwithhigh oleicoilcontent(Cheah,2000,Yusof,2001).AlthoughMPOBhasmadesignificantprogressinthisendeavour,itmanytakemanyyearsbeforegenetically-modified(GM)palmsbecomeavailableforcommercialplanting.Estimatesforcommercialisationrangedfrom15years(Corley,1999)to30-40years(Pushparajah,2001).Thelatestprojectionindicatesthattransgenichigholeicacidpalmscouldbeavailableforfieldtestingfrom2007-2010andcommercialplantingcouldcommencearound2015(Ravigadeviet.al.,2002).

1.3 Characteristicsofpalmoil

Theoilpalmproducestwotypesofoils,palmoilfromthefibrousmesocarpandlauricoilfromthepalm  kernel.In  theconventionalmillingprocess,thefreshfruitbunchesaresterilisedandstrippedofthefruitletswhicharethendigestedandpressedtoextractthecrudepalmoil(CPO).Thenutsareseparatedfromfibreinthepresscakeandcrackedtoobtainpalmkernelswhicharecrushedinanotherplanttoobtaincrudepalmkerneloil(CPKO)andaby-product,palmkernelcakewhichisusedasananimalfeed.FractionationofCPOandCPKOintherefineryproducestheliquidstearinfractionandasolidstearincomponent.Thefattyacidcompositionsthepalmoilproducts,comparedwithcoconutoiland soyoil are presented in Table1. Palm oilhas a balancedratioofsaturated andunsaturatedfattyacidswhilepalmkerneloilhasmainlysaturatedfattyacidswhichisbroadlysimilartothecompositionofcoconutoil.Comparedtosoyoil,palmoilhasahigheramountofsaturatedfattyacidsbutthismakesitmorestableandlesspronetooxidationathightemperatures



Table1:FattyAcidCompositionsofPalmOilProducts,SoyOilandCoconutOil


FattyAcids
WeightPercentage

Palm Oil

Palm Olein
PalmStearin
PalmKernel Oil
PalmKernelOlein
CoconutOil

SoyOil
C6:0



0.3
0.4
0.2

C8:0



4.4
5.4
8.0

C10:0



3.7
3.9
7.0

C12:0
0.2
0.2
0.3
48.3
41.5
48.2

C14:0
1.1
1.0
1.3
15.6
11.8
18.0

C16:0
44.0
39.8
55.0
7.8
8.4
8.5
6.5
C18:0
4.5
4.4
5.1
2.0
2.4
2.3
4.2
C18:1
39.2
42.5
29.5
15.1
22.8
5.7
28.0
C18:2
10.1
11.2
7.4
2.7
3.3
2.1
52.6
Others
0.8
0.9
0.7
0.1
0.1

8.0
IodineValue
53.3
58.4
35.5
17.8
25.5
9.5
133.0
Source: SalmiahAhmad,2000

1.4 Foodandnon-foodusesofpalmoil


Palmoilandpalmkerneloilhaveawiderangeofapplications,about80%areusedoffoodapplicationswhiletherestisfeedstockforanumberofnon-foodapplications(Salmiah.2000).Amongthefooduses,refined,bleachedanddeodorised(RBD)oleinisusedmainlyascookingandfryingoils,shorteningsandmargarinewhileRBDstearinisusedfortheproductionofshorteningsandmargarine.RBDpalmoil(i.e.unfractionatedpalmoil)isusedfor producingmargarine, shortenings,vanaspati(vegetable ghee),frying fats and ice cream.Severalblendshavebeendevelopedtoproducesolidfatswithazerocontentoftrans-fattyacids(Berger,1996).(Trans-fattyacids,whichmayhaveanadverseeffectonhealth,areproducedwhenunsaturatedfatsarepartiallyhydrogenatedtoobtainsolidfatproductssuchasmargarine.).Intheproductionoficecream,milkfatsarereplacedbyacombinationofpalmoilandpalmkerneloil.Ablendofpalmoil,palmkerneloilandotherfatsreplacesmilkfatfortheproductionofnon-diarycreamersorwhiteners.Plate4providesexamplesofanumberofpalm-basedfoodapplications.








Plate4:Varietyofpalmoil-basedfoodproducts

A relativelynew product isthe Red Palm Oleinwhich is refined undera special mildprocesstoretainmostthenaturalcarotenes-precursorsofVitaminA(Berger,1996).Palmoilandpalmkerneloilarealsoingredientsforproductionspecialtyfatswhichincludecocoabutterequivalents(CBE)andCocoaBitterSubstitutes(CBS)andgeneralpurposecoatingfats.CBEandCBShavephysicalpropertiesthataresimilartococoabutter(DeMananddeMan,1994)andarewidelyusedforproductionofchocolateconfectioneries(Plate5).ThesuitabilityofvariouspalmoilproductsforarangeoffoodapplicationsisgiveninTable2.

Plate5:Confectioneryproductscontaining                                                                               8
palm-basedcocoabuttersubstitutes

Table2:FoodUsesofPalmOilProducts


Product

Palm Oil

PalmOlein
Stearin(Soft)
PalmStearin(Hard)
HardenedPalmOil
DoubleFractionatedPalm Oil
PalmMidFraction
PalmKernelOil
Shortenings
***
***
***
**
***
´
*
*
Vanaspati
***
***
***
*
***
´
*
´
Margarines
***
***
***
*
***
´
*
***
FryingFats
***
***
**
´
**
***
*
´
Cooking Oil (HotClimate)
´
***
´
´
´
***
´
´
SpecialtyFats for Coatings
´
´
***
´
´
´
*
***
IceCream
***
´
´
´
**
´
´
***
Cookies
***
´
**
*
**
´
´
´
Crackers
***
*
**
*
*
´
´
***
Cake Mixes
***
´
**
*
*
´
´
´
Icing
**
´
*
´
*
´
**
´
InstantNoodles
***
***
**
´
***
´
´
´
Non-Dairy Creamer
*
´
*
´
*
´
´
***
Biscuits
***
*
**
*
**
´
´
***
DoughFat
***
´
***
***
***
´
´
´
*** Highlysuitable               **Suitable              * Minorapplicationonly     ´Not  suitableSource:MPOPC,1996

Non-foodusesofpalmoilandpalmkerneloilareproducedeitherdirectlyorthroughtheoleochemicalroute.DirectapplicationsincludetheuseofCPOasadieselfuelsubstitute,drillingmud,soapsandepoxidisedpalmoilproducts(EPOP),polyols,polyurethanesandpolyacrylates(Salmiah,2000).Researchresultshaveshownthatcrudepalmoilcanbeuseddirectlyasafuelforcarswithsuitablymodifiedengines.Indrillingforoil,palmoilhasbeenfoundtobeanon-toxicalternativetodieselasabasefordrillingmud.

Oleochemicalsareproducedbythehydrolysisoralcoholysisofoilsandfats;thetraditionalrawmaterialsbeingtallowandcoconutoiltoproduceC16-C18andC12-C14chainlengthsoleochemicalsrespectively. Fromthe1980s,palmproducts,particularlypalm kerneloilhavebecomemajorfeedstocksfortheoleochemicalindustry.Theproductionofpalm-basedbasicoleochemiclasbyMalaysiainyear2000was1.2milliontonneswhichwasequivalentto19.7%ofthetotalproductionintheworld.Thebasicoleochemicalsarefattyacids,esters,alcohols,nitorgencompoundsandglycerol;theirmajorapplicationsaresummarisedbelow(Salmiah,2000).
·         Fattyacids
-          Mediumchaintriglyceridesforuseintheflavourandfragranceindustries
-          Processingaidsforrubberproducts,forsofteningandplasticisingeffect
-          Productionofcandles
-          Manufactureofcosmeticproductsfrommyristic,palmiticandstearicacids
-          Productionofsoapsviaaneutralisationprocess
-          Productionofnon-metallicornon-sodiumsoaps


·         Fattyesters
-          Productionofpuresoapbetterqualitythansoapsfromfattyacids
-          Alfa-sulphonatedmethylesters           asactiveingredientsforwashingandcleaningproducts(anionicsurfactants)
-          Palm-basedmethylestersasasubstitutefordieselfuelforvehiclesandengines

·         Fattyalcohols
-          
Fattyalcoholsulphates(anionicsurfactants)                 Productionof

-          Fattyalcoholethoxylates(nonionicsurfactants)            washingand
-          Fattyalcoholethersulphates(anionicsurfactants)       cleaningproducts

·         Fattynitrogencompounds
-          Imidazolineswithgoodsurfaceactiveproperties(rustprevention)
-          Esterquatsassofteners

·         Glycerol(MonoglyceridesandDiglycerides)
-          Widerangeofapplicationssuchasasolventforpharmaceuticalproducts,humectantincosmeticsandtobacco,stabilisers,lubricants,antifreeze,etc


1.5  Worldproductionofpalmoil


In2001,theworld’sproductionofpalmoilwas23.18milliontonnesor19.8%ofthetotalproductionof17oilsandfats,makingitthesecondmostimportantoilaftersoyoil.Palmoilhasachievedimpressivegrowthinproductionandexportsinthelastfewdecades;productionhaddoubledfrom1990to2001(Table3).Intermsofexports,palmoilisthemostwidelytradedoil,accountingfor45.6%oftheworld’sexportsof17oilsandfatsin2001(www.mpob.gov.my/).Malaysiaisthelargestproducerofpalmoil,contributingabout11.80milliontonnesor50.9%oftotalproduction,whileIndonesiaproducedabout7.5milliontonnesor32.3%.Malaysiaisalsotheworld’slargestexporterofpalmoil,accountingforabout61.1%or10.62milliontonnesofthetotalexportsof17.37milliontonnesin2001(Table4).

Table3:WorldProductionofPalmOil('000tonnes)

Countryof Origin
1990
1995
1999
2000
2001
Malaysia
6,095
7,811
10,554
10,800
11,804
Indonesia
2,413
4,480
6,250
6,900
7,480
Nigeria
580
660
720
740
750
Colombia
226
387
500
516
547
Cote d'Ivoire
270
285
282
290
275
Thailand
232
354
475
510
535
Ecuador
120
180
230
215
240
PapuaNewGuinea
145
223
260
281
325
Others
786
1,097
1,339
1,699
1,226
Total
10,867
15,477
20,610
21,951
23,182
Source:OilWorld andMPOB(citedinwww.mpob.gov.my)


Table4:WorldMajorExportersofPalmOil('000tonnes)


Country
1990
1995
1999
2000
2001
Malaysia
5,727
5,613
8,914
9,056
10,618
Indonesia
1,163
1,856
3,319
4,140
4,800
PapuaNewGuinea
143
220
254
282
320
Cote d’Ivoire
156
120
105
110
124
Singapore
679
399
292
293
259
HongKong
51
275
94
132
187
Others
276
790
837
909
1,063
Total
8,195
10,173
13,815
14,922
17,371
Source:Oil World(citedinwww.mpob.gov.my)


Worldproductionofpalmoilwasprojectedtodoublefrom2000to2020withatotalproductionexceeding40milliontonnes(Table5).ThemaingrowthisexpectedfromIndonesia,whichcouldbecometheworld’sleadingproducerby2015.However,inviewofthe political and socio-economicturmoilthat followedthe Asian financial crisis,it is uncertainiftheprojectedtargetscouldbeachieved

Table5:ProjectedProductionofPalmOil(2000–2020)(milliontonnes)

Year
Malaysia
Indonesia
WorldTotal
AnnualProduction
2000
10,100 (49.3%)
6,700 (32.7%)
20,495
2001
10,700 (48.1%)
7,720 (34.7%)
22,253
2002
10,980 (48.4%)
7,815 (34.5%)
22,682
2003
11,050 (47.7%)
8,000 (34.6%)
23,149
2004
10,900 (45.6%)
8,700 (36.4%)
23,901
2005
11,700 (45.6%)
9,400 (36.6%)
25,666
Five-yearAverages
1996–2000
9,022 (50.3%)
5,445 (30.4%)
17,932
2001–2005
11,066 (47.0%)
8,327 (35.4%)
23,530
2006–2010
12,700 (43.4%)
11,400 (39.0%)
29,210
2011–2015
14,100 (40.2%)
14,800 (42.2%)
35,064
2016–2020
15,400 (37.7%)
18,000 (44.1%)
40,800
Source:Oil World2020                                                                                                          (% )= % ofworld total

Table6liststhemajorimportingcountriesofpalmoil,thelargestimporterisIndiawhichaccountedfor20.2%oftheworld’simportsin2001.OthermajorimportersareChinaPRCandPakistan;collectivelyChinaandcountriesintheIndiansub-continentaccountformorethan40%oftheworld’simportsofpalmoil.CountriesintheEuropeanUnionwerebuyersfor17.2%oftheworld’simportsin2001.Intermsofproduction,theEUusedabout12.9%oftheworld’sproductionofpalmoillastyear.Theconsumptionofpalmoilbynon-European

OECDcountrieshadbeenrelativelyinsignificant;USAimport’swasabout1%and                 Japan’ssharewas2.2%oftotalimportsin2001.

Table6:MajorImportersofPalmOil(‘000tonnes)

Country
1990
1995
1999
2000
2001
China
1,133
1,595
1,373
1,764
2,049
EU
1,556
1,738
2,059
2,414
2,985
Pakistan
683
1,122
1,114
1,107
1,229
Egypt
NA
353
373
524
564
India
668
863
1,672
3,677
3,507
Japan
276
351
357
373
376
Malaysia
NA
38
86
57
116
Turkey
182
201
166
204
257
South Korea
217
156
151
200
220
Myanmar
134
305
249
202
227
USA
130
102
116
165
171
Bangladesh
82
53
93
226
320
Indonesia
27
55
25
7
7
SouthAfrica
NA
128
160
195
290
SaudiArabia
128
169
178
206
244
Kenya
158
177
178
213
218
Ex-USSR
202
57
68
142
202
OtherCountries
3,052
2,882
2,451
3,576
4,386
Total
8,628
10,345
10,869
15,252
17,368
Source:Oil World(citedinwww.mpob.gov.my)

1.6 PalmOilProductioninMalaysia

1.6.1 PlantedAreaunderOilPalm

AlthoughcommercialplantingofoilpalminMalaysiabeganin1917,large-scalecultivationdidnottakeoffuntilthe1960sfollowingtheGovernment’scropdiversificationthruststrategytoreducethecountry’sdependenceonrubber,whichhithertohadbeenoneofthetwopillarsoftheMalaysianeconomy.Thegrowthoftheindustry,intermsofplantedareasincethenhasbeenveryrapidasseeninFigure1andTable7.In2001,thetotalareaplantedwithoilpalmwas3,499,012hectares,59.9%or2,096,856hectaresbeinginPeninsularMalaysia,29.4%or1,027,329hectaresinSabahand10.7%or374,828hectaresinSarawak.ThelastdecadehadseenrapidexpansioninthecultivatedareainSabahandSarawak;whileplantinginPeninsularMalaysiahadsloweddownbecauseofdiminishingavailabilityofnewlandforthecrop.


Table7:GrowthinAreaPlantedwithOilPalminMalaysia

Year
Total PlantedArea(ha)
GrowthRate(%)
1960
54,638


478% (1960/70)
1970
261,199
1980
1,023,306
392% (1970/80)
1990
2,029,464
198% (1980/90)
2000
3,376,664
166% (1990/00)







 ThegeographicaldistributionofoilplantingisgiveninTable8,in2001,thelargestoilpalmgrowingstateswereSabah,JohorandPahang,accountingforabout63%ofthetotalplantedarea.TherateofplantinginSabahhasbeenimpressive,consideringthatcommercialplantinginthestateonlycommencedin1970.InviewofthelimitedavailabilityofnewareasforplantationagricultureinPeninsularMalaysia,futureexpansionofoilpalmwouldbemainlyinSabahandSarawak.,IthasbeenforecastthatoilpalmareainSarawakwouldincreasetoonemillionhectaresbytheyear2010(AbangHelmi,1998).

1.6.2 Production


Withtherapidexpansionintheplantedarea,theannualproductionofpalminMalaysiahadincreasedsignificantlyinMalaysia;thecrudepalmoil(CPO)producedin2001was11.8milliontonneswhichwas4.6timesthevolumeproducedin1980(Table9).TheincreaseinproductioninSabahwasparticularlyimpressive,reflectingtheaggressiveplantingpolicyinthestateanditbecamethelargestCPOproducerin1999.In2001,Sabahaccountedfor31.5%ofthenationalproduction.OthermajorCPOproducingstatesareJohore,PahangandPerakinPeninsularMalaysia.(Figure2)

Table9:ProductionofCrudePalmOilinMalaysia(Tonnes)
Region
1980
1990
1995
1999
2000
2001
P.Malaysia
2,394,324
6,094,622
6,094,560
7,427,838
7,221,539
7,477,338
Sabah
156,471
678,995
1,493,623
2,664,516
3,110,320
3,716,168
Sarawak
22,378
107,651
222,363
461,564
520,236
610,282
Total
2,573,173
6,881,268
7,810,546
10,553,918
10,852,095
11,803,788
 Source:MPOB(citedinwww.mpob.gov.my)


Key Processes in the Production of Palm Oil

$
0
0
2.1 ProductionofFreshFruitBunches(FFB)

Thekeysub-processesinvolvedinthedevelopmentofplantationsfortheproductionoffreshfruitbunches(FFB)areshowninFigure3 andthemainactivitiesforeachsteparesummarisedbelow:

Figure 3: Processes in the Production of Fresh Fruit Bunches






















Planning Phase for the development of new plantations would involve the conduct for feasibility studies and an environment impact assessment (EIA) if the area to be developed is primary or secondary forest in excess of 500 hectares. An EIA is also required if the development involves changes in the types of agricultural use of land in excess of 500 hectares.
       
Figure 4: NREB’s EIA Process     
                                                 













        







The EIA study would facilitate the identification potential environmental and social impacts and development of management plans to mitigate the adverse effects. The process for theapproval of EIA reports is shown in Figure 4 which is based on the approach adopted by the Natural Resources and Environment Board, Sarawak.

Nursery Establishment commences as soon as the land is found to be suitable and approved by the respective agencies for development to proceed. Good quality DxP seedlings are raised in a polybag nursery for about 12 months. Good nursery practices such as adequate watering, manuring and culling of seedlings with undesirable characteristics are essential for the production of vigorous planting materials. A culling rate of up to 25% is commonly practised in well managed nurseries.

Site Preparation include land survey, clearing of existing vegetation, establishment of a road and field drainage system, soil conservation measures such as terracing, conservation bunds and silt pits and sowing of leguminous cover crops. From the early 1990s, the zero burning technique for land clearing, from logged-over forest areas and replanting from various plantation crops.

Field Establishment activities are lining, holing and planting of polybag oil palm seedlings at density of 136 to 148 palms per ha, depending on the soil type. It is important that effort is made to obtain full ground coverage by leguminous cover crops such as Pueraria javanica and Calopogonium caeruleum to minimise soil loss through runoff as well as to improve the soil properties through nitrogen fixation. (Plate 6)



          






Plate6:Immatureoilpalmwithfullcoverofleguminouscovercrops.
        




FieldMaintenanceoperationsincludeweeding,watermanagement,pruning,pestanddiseasemanagementandmanuring.Integratedpestmanagementinvolvingamixofcultural,physical,chemicalandbiologicalcontrolapproachestominimisecroplossestopestsiscommonlyadoptedinplantations.ExamplesofbiologicalcontrolmeasuresappliedincludetheuseofbaculovirusandMetarhiziumanisopliaetocontroltherhinocerosbeetle(Oryctesrhinoceros),control of leaf-eatingbagwormsand nettlecaterpillars bytheirnatural predatorsandparasitoidsandtheuseofbarnowls(Tytoalba)(Plates7and8)asthebiologicalagenttocontrolrats.(GoldenHopePlantationsBerhad,1997).Asthecostoffertilisersisthemajorcomponentoffieldupkeepexpenditure,plantationcompaniesgenerallyundertakesoilandfoliaranalysesofindividualfieldsregularlytoassesstheirnutritionalstatusanddeterminetheappropriatetypesandquantitiesoffertilisers requiredforoptimalpalmdevelopmentandproduction.

                                              







 
  Plate7:Barnowlsforratcontrol
                 


 










Plate8:Stakeholderadvisorybookleton
integratedpestmanagement

Harvesting and Collection
Harvesting of FFB commences between 24 to 30 months after field planting, depending on the soil type and agronomic and management inputs. Harvesting is done manually, using a chisel in young palms and a sickle mounted on a bamboo or aluminum pole in taller palms (Plate 9)

Varioussystemsforin-fieldcollectionofFFBandtransportationtothepalmoilmill.Inviewofincreasingshortageofworkersaswellastheneedtoincreaseworkerproductivity,mechanisedapproacheshavebeenadoptedbyplantations,anexamplebeingthetractor-mounted‘grabber’(Plate10).
Replanting.Theeconomiccycleoftheoilpalmisabout25
 
Plate9:HarvestingofFFB


Plate10:Tractormounted‘grabber’



years, after which the old stand is replanted. The zero burning technique of replanting is now common commercial practice. However, in some situations, plantations consider underplanting, whereby new seedlings are planted under the old palms which are thinned out progressively to allow the development of the new stand.

2.2 ProductionofCrudePalmOil(CPO)andPalmKernel(PK)


Afterharvesting,itisimportantthatthefreshfruitbunches(FFB)areprocessedassoonaspossibletopreventarapidriseinfreefattyacids(FFA)whichcouldadverselyaffectthequalityofthecrudepalmoil(CPO).Palmoilmillsaregenerallylocatedintheplantationstofacilitatetimelytransportation andeffective processingofFFB.In2001,therewere352 palmoilmillsinMalaysia(Table10),ofwhichabout70%werelocatedinPeninsularMalaysia.

Table10: Numberof Oil Mills, Refineriesand PalmKernelCrushingFactoriesin Operation in2001inMalaysia
Region
Oil Mills
Refineries
CrushingFactories
No
Capacity1
No
Capacity2
No
Capacity3
P.Malaysia
244
45,373,720
38
10,952,900
30
3,254,600
SabahSarawak
89
19
18,750,600
3,620,400
9
4,596,500
8
1,057,500
Malaysia
352
67,744,720
47
15,549,400
38
4,312,100
Source:MPOB                                      Capacity:                      1.TonnesFFB/year
2.   TonnesCPO /year
3.   Tonnes Palm Kernel/year

The palm oil milling process (Figure 5) involves the physical extraction of palm products namely, crude palm oil and palm kernel from the FFB. The process begins with sterilisation of the FFB. The fruit bunches are steamed in pressurised vessels up to 3 bars to arrest the formation of free fatty acids and prepare the fruits for subsequent sub-processes.

The sterilised bunches are then stripped of the fruitlets in a rotating drum thresher. The stripped bunches or empty fruit bunches (EFB) are transported to the plantation for mulching while the fruitlets are conveyed to the press digesters.

In the digesters, the fruits are heated using live steam and continuously stirred to loosen the oil-bearing mesocarp from the nuts as well as to break open the oil cells present in the mesocarp. The digested mash is then pressed, extracting the oil by means of screw presses. The press cake is then conveyed to the kernel plant where the kernels are recovered.

The oil from the press is diluted and pumped to vertical clarifier tanks. The clarified oil is then fed to purifiers to remove dirt and moisture before being dried further in the vacuum drier. The clean and dry oil is ready for storage and dispatch.

The sludge from the clarifier sediment is fed into bowl centrifuges for further oil recovery. The recovered oil is recycled to the clarifiers while the water/sludge mixture which is referred to as Palm Oil Mill Effluent (POME) is treated in the effluent treatment plant.(ETP).

The press cake is conveyed to the depericarper where the fibre and nuts are separated. Fibre is burned as fuel in the boiler to generate steam. The nuts are cracked and the shell and kernel are separated by means of a winnower and hydro-cyclone. The clean kernels are dried prior to storage.

Figure5:PalmOilMillingProcess


2.3 Production of Refined Edible Palm Oil

About 80% of the national production of crude palm oil is used for food purposes, mainly as cooking oils. The CPO produced by the mills have to be refined to meet the industry’s and international standards (FAO’s Codex Alimentarius) for edible oils. The production of refined oil is undertaken in 57 refineries in Malaysia (Table 10) with a total refining capacity of 15.5 million tonnes CPO per year.

The refining process removes free fatty acids, phosphatides, odouriferous matter, water as well as impurities such as dirt and traces of metals from the CPO; the objective being to produce an edible oil of consistent quality that meets industry’s standards and satisfies customer requirements particularly in respect of FFA, moisture and impurities, Iodine Value, Peroxide Value, melting point, colour and flavour. The refined oil must tasteless and have a bland flavour.

CPO is processed by either physical or chemical refining to produce either refined, bleached and deodourised palm oil (RBDPO) or neutralised, bleached and deodourised palm oil (NBDPO). These are subjected to fractionation to obtain the respective liquid olein fraction and the solid stearin fraction. (Figure 6). Of the two processes, physical refining is the predominant approach adopted by the refineries as it is simpler, less capital intensive, more efficient and produces a lower effluent load.

Physical or steam refining begins with degumming when the CPO is treated with food grade phosphoric acid or citric acid to remove natural gums in the form of phosphatides , followed by bleaching with activated earth (Fuller’s Earth) under vacuum to remove colouring matters as well as to adsorb any metal ions. The treated oil is then heated to 240 C - 260 C under 2- 6 mm Hg (MEOMA, 2002) for simultaneous deacidification and deodorisation. The FFA is stripped off by live steam and is recovered together with the entrained oil is as palm fatty acid distillate. The steam distillation process also removes odours and off-flavors from the CPO (‘Deodorisation’). The oil is then cooled to 55°C before polishing.

In the chemical refining process, the FFA present in CPO is removed by neutralisation with caustic soda (sodium hydroxide), the concentration of the latter being dependent on the quality of the CPO feedstock. This chemical reaction produces neutralised CPO and a soap stock; the latter is separated from the oil by a high-speed separator. The neutralised oil is subjected to earth bleaching to remove colour pigments and metal ions followed by deodorisation - steam distillation under vacuum to remove odoriferous matters such as aldehydes and ketones.

The refined oil contains triglycerides of various compositions and melting points, the main fractions being palm olein and palm stearin. These fractions can be separated by dry fractionation, detergent fractionation and solvent fractionation. Dry fractionation is
commonly used whereby the refined oil is allowed to crystallise under controlled temperature and the resultant slurry is pumped through a membrane filter press to obtain the liquid olein fraction and the solid stearin portion. The olein could also be fractionated for a second time (‘double fractionation’) to produce a ‘super olein’ and a solid palm mid-fraction (PMF) which is the feedstock for production of specialty fats and other products.
Figure6:PalmOilRefiningProcess
 

























Palm Kernel Oil Extraction

$
0
0
5.1 Mechanical extraction
Mechanical extraction processes are suitable for both small- and large- capacity operations. The three basic steps in these processes are (a) kernel pre-treatment, (b) screw-pressing, and (c) oil clarification.
                 Diagram 2: Mechanical extraction of palm kernel oil.

              



















Line (A) is for direct screw-pressing without kernel pre-treatment; Line (B) is for partial kernel pre-treatment followed by screw-pressing; and Line C is for complete pre-treatment followed by screw-pressing.
Kernel pre-treatment
Proper kernel pre-treatment is necessary to efficiently extract the oil from the kernels. The feed kernels must first be cleaned of foreign materials that may cause damage to the screw-presses, increasing maintenance costs and down time, and contamination of

products. Magnetic separators commonly are installed to remove metal debris, while vibrating screens are used to sieve sand, stones or other undesirable materials.
A swinging hammer grinder, breaker rolls or a combination of both then breaks the kernels into small fragments. This process increases the surface area of the kernels, thus facilitating flaking. The kernel fragments subsequently are subjected to flaking in a roller mill. A large roller mill can consist of up to five rollers mounted vertically above one another, each revolving at 200-300 rpm. The thickness of kernel cakes is progressively reduced as it travels from the top roller to the bottom. This progressive rolling initiates rupturing of cell walls. The flakes that leave the bottom nip are from 0.25 to 0.4 mm thick.
The kernel flakes are then conveyed to a stack cooker for steam conditioning, the purpose of which is to:
· adjust the moisture content of the meal to an optimum level;
· rupture cell walls (initiated by rolling);
· reduce viscosity of oil;
· coagulate the protein in the meal to facilitate separation of the oil from protein materials.

The meal flows from the top compartment down to the fifth compartment in series. At each stage a mechanical stirrer agitates the meal. Steam trays heat the cookers, and live steam may be injected into each compartment when necessary. The important variables are temperature, retention time and moisture content. In the palm kernel, the meals are normally cooked to a moisture content of 3 percent at 104-110°C.
Screw-pressing
The properly cooked meal is then fed to the screw-press, which consists of an interrupted helical thread (worm) which revolves within a stationary perforated cylinder called the cage or barrel. The meal is forced through the barrel by the action of the revolving worms. The volume axially displaced by the worm diminishes from the feeding end to the discharge end, thus compressing the meal as it passes through the barrel.



The expelled oil drains through the perforation of the lining bars of the barrel, while the de-oiled cake is discharged through an annular orifice. In order to prevent extreme temperatures that could damage the oil and cake quality, the worm-shaft is always cooled
with circulating water while the barrel is cooled externally by recycling some cooled oil.
Oil clarification
The expelled oil invariably contains a certain quantity of ‘fines and foots’ that need to be removed. The oil from the presses is drained to a reservoir. It is then either pumped to a decanter or revolving coarse screen to remove a large part of the solid impurities. The oil is then pumped to a filter press to remove the remaining solids and fines in order to produce clear oil prior to storage. The cakes discharged from the presses are conveyed for bagging or bulk storage.
As can be seen from Diagram 2, not all crushers use the same procedure for mechanical extraction of kernel oil. There are three variations: direct screw-pressing, partial pre-treatment, and complete pre-treatment.
Direct screw-pressing
Some mills crush the kernels directly in the presses without any pre-treatment. Double pressing usually is required to ensure efficient oil extraction. The screw-presses used normally are less than 10 tonnes per unit per day.
Partial pre-treatment
The kernels are first broken down to smaller fragments by grinding prior to screw-pressing. In some cases, cooking is also carried out.
Complete pre-treatment
The full pre-treatment processes described earlier are carried out prior to screw-pressing. Plants with larger capacities (50-500 tonnes per day) choose complete pre-treatment and the equipment is usually imported from Europe. FATECO and Faith Engineering now offer the complete line for small-scale operators.


5.2 Solvent extraction
Solvent extraction processes can be divided into three main unit operations: kernel pre-treatment, oil extraction, and solvent recovery from the oil and meal. For the purposes of small-scale operations it is sufficient to mention the solvent extraction process is an alternative for high capacity mills. However the process is not recommended for small enterprises.
5.3 Traditional method of palm kernel extraction
Palm kernel extraction is a specialised operation undertaken by a completely different set of processors. They are usually better organized as a group and are not as dispersed as palm oil processors. The kernel processors have to go around the palm oil processors during the peak season, when prices are lowest, to purchase the nuts for drying. The nut processing and oil extraction is undertaken in the dry season when the pressure to obtain raw materials has subsided.
The traditional palm oil processing starts with the shelling of the palm nuts. The shelling used to be performed using two stones to crack each nut and separating the kernel and shell simultaneously. This manual operation has been largely superseded by the use of nut-cracking stations.
The mechanical nut-crackers deliver a mixture of kernels and shells that must be separated. The kernel/shell separation is usually performed in a clay-bath, which is a concentrated viscous mixture of clay and water. The density of the clay-bath is such that the shells sink while the lighter kernels float to the top of the mixture. The floating kernels are scooped in baskets, washed with clean water and dried. Periodically, the shells are scooped out of the bath and discarded.
The traditional oil extraction method is to fry palm kernels in old oil or simply heat the dried nuts. The fried kernels are then pounded or ground to a paste in a motorised grinder. The paste is mixed with a small quantity of water and heated to release the palm kernel oil. The released oil is periodically skimmed from the top.
Today, there are stations in villages that will accept well-dried kernels for direct extraction of the oil in mechanised, motorised expellers. (Fig. 20, 21)

Fig. 20 Whole palm kernel expeller (CAMEMEC, Benin)
Fig. 21 Palm kernel expeller (O.P.C., Cameroon)


Palm Oil Processing

$
0
0
3.1 General processing description
Research and development work in many disciplines - biochemistry, chemical and mechanical engineering - and the establishment of plantations, which provided the opportunity for large-scale fully mechanised processing, resulted in the evolution of a sequence of processing steps designed to extract, from a harvested oil palm bunch, a high yield of a product of acceptable quality for the international edible oil trade. The oil winning process, in summary, involves the reception of fresh fruit bunches from the plantations, sterilizing and threshing of the bunches to free the palm fruit, mashing the fruit and pressing out the crude palm oil. The crude oil is further treated to purify and dry it for storage and export.
Large-scale plants, featuring all stages required to produce palm oil to international standards, are generally handling from 3 to 60 tonnes of FFB/hr. The large installations have mechanical handling systems (bucket and screw conveyers, pumps and pipelines) and operate continuously, depending on the availability of FFB. Boilers, fuelled by fibre and shell, produce superheated steam, used to generate electricity through turbine generators. The lower pressure steam from the turbine is used for heating purposes throughout the factory. Most processing operations are automatically controlled and routine sampling and analysis by process control laboratories ensure smooth, efficient operation. Although such large installations are capital intensive, extraction rates of 23 - 24 percent palm oil per bunch can be achieved from good quality Tenera.
Conversion of crude palm oil to refined oil involves removal of the products of hydrolysis and oxidation, colour and flavour. After refining, the oil may be separated (fractionated) into liquid and solid phases by thermo-mechanical means (controlled cooling, crystallization, and filtering), and the liquid fraction (olein) is used extensively as a liquid cooking oil in tropical climates, competing successfully with the more expensive groundnut, corn, and sunflower oils.
Extraction of oil from the palm kernels is generally separate from palm oil extraction, and will often be carried out in mills that process other oilseeds (such as groundnuts, rapeseed, cottonseed, shea nuts or copra). The stages in this process comprise grinding the kernels into small particles, heating (cooking), and extracting the oil using an oilseed

expeller or petroleum-derived solvent. The oil then requires clarification in a filter press or by sedimentation. Extraction is a well-established industry, with large numbers of international manufacturers able to offer equipment that can process from 10 kg to several tonnes per hour.
Alongside the development of these large-scale fully mechanised oil palm mills and their installation in plantations supplying the international edible oil refining industry, small-scale village and artisanal processing has continued in Africa. Ventures range in throughput from a few hundred kilograms up to 8 tonnes FFB per day and supply crude oil to the domestic market.
Efforts to mechanise and improve traditional manual procedures have been undertaken by research bodies, development agencies, and private sector engineering companies, but these activities have been piecemeal and uncoordinated. They have generally concentrated on removing the tedium and drudgery from the mashing or pounding stage (digestion), and improving the efficiency of oil extraction. Small mechanical, motorised digesters (mainly scaled-down but unheated versions of the large-scale units described above), have been developed in most oil palm cultivating African countries.
Palm oil processors of all sizes go through these unit operational stages. They differ in the level of mechanisation of each unit operation and the interconnecting materials transfer mechanisms that make the system batch or continuous. The scale of operations differs at the level of process and product quality control that may be achieved by the method of mechanisation adopted. The technical terms referred to in the diagram above will be described later.
The general flow diagram is as follows:

PALM OIL PROCESSING UNIT OPERATIONS




















Harvesting technique and handling effects
In the early stages of fruit formation, the oil content of the fruit is very low. As the fruit approaches maturity the formation of oil increases rapidly to about 50 percent of mesocarp weigh. In a fresh ripe, un-bruised fruit the free fatty acid (FFA) content of the oil is below 0.3 percent. However, in the ripe fruit the exocarp becomes soft and is more easily attacked by lipolytic enzymes, especially at the base when the fruit becomes detached from the bunch. The enzymatic attack results in an increase in the FFA of the oil through hydrolysis. Research has shown that if the fruit is bruised, the FFA in the

damaged part of the fruit increases rapidly to 60 percent in an hour. There is therefore great variation in the composition and quality within the bunch, depending on how much the bunch has been bruised.
Harvesting involves the cutting of the bunch from the tree and allowing it to fall to the ground by gravity. Fruits may be damaged in the process of pruning palm fronds to expose the bunch base to facilitate bunch cutting. As the bunch (weighing about 25 kg) falls to the ground the impact bruises the fruit. During loading and unloading of bunches into and out of transport containers there are further opportunities for the fruit to be bruised.
In Africa most bunches are conveyed to the processing site in baskets carried on the head. To dismount the load, the tendency is to dump contents of the basket onto the ground. This results in more bruises. Sometimes trucks and push carts, unable to set bunches down gently, convey the cargo from the villages to the processing site. Again, tumbling the fruit bunches from the carriers is rough, resulting in bruising of the soft exocarp. In any case care should be exercised in handling the fruit to avoid excessive bruising.
One answer to the many ways in which harvesting, transportation and handling of bunches can cause fruit to be damaged is to process the fruit as early as possible after harvest, say within 48 hours. However the author believes it is better to leave the fruit to ferment for a few days before processing. Connoisseurs of good edible palm oil know that the increased FFA only adds ‘bite’ to the oil flavour. At worst, the high FFA content oil has good laxative effects. The free fatty acid content is not a quality issue for those who consume the crude oil directly, although it is for oil refiners, who have a problem with neutralization of high FFA content palm oil.
3.1.1 Bunch reception
Fresh fruit arrives from the field as bunches or loose fruit. The fresh fruit is normally emptied into wooden boxes suitable for weighing on a scale so that quantities of fruit arriving at the processing site may be checked. Large installations use weighbridges to weigh materials in trucks.


The quality standard achieved is initially dependent on the quality of bunches arriving at the mill. The mill cannot improve upon this quality but can prevent or minimise further deterioration.
The field factors that affect the composition and final quality of palm oil are genetic, age of the tree, agronomic, environmental, harvesting technique, handling and transport. Many of these factors are beyond the control of a small-scale processor. Perhaps some control may be exercised over harvesting technique as well as post-harvest transport and handling.
3.1.2 Threshing (removal of fruit from the bunches)
The fresh fruit bunch consists of fruit embedded in spikelets growing on a main stem. Manual threshing is achieved by cutting the fruit-laden spikelets from the bunch stem with an axe or machete and then separating the fruit from the spikelets by hand. Children and the elderly in the village earn income as casual labourers performing this activity at the factory site.
In a mechanised system a rotating drum or fixed drum equipped with rotary beater bars detach the fruit from the bunch, leaving the spikelets on the stem (Fig. 3).
Most small-scale processors do not have the capacity to generate steam for sterilization. Therefore, the threshed fruits are cooked in water. Whole bunches which include spikelets absorb a lot of water in the cooking process. High-pressure steam is more effective in heating bunches without losing much water. Therefore, most small-scale operations thresh bunches before the fruits are cooked, while high-pressure sterilization systems thresh bunches after heating to loosen the fruits.
Small-scale operators use the bunch waste (empty bunches) as cooking fuel. In larger mills the bunch waste is incinerated and the ash, a rich source of potassium, is returned to the plantation as fertilizer.
3.1.3 Sterilization of bunches
Sterilization or cooking means the use of high-temperature wet-heat treatment of loose fruit. Cooking normally uses hot water; sterilization uses pressurized steam. The cooking action serves several purposes.

· Heat treatment destroys oil-splitting enzymes and arrests hydrolysis and autoxidation.
· For large-scale installations, where bunches are cooked whole, the wet heat weakens the fruit stem and makes it easy to remove the fruit from bunches on shaking or tumbling in the threshing machine.
· Heat helps to solidify proteins in which the oil-bearing cells are microscopically dispersed. The protein solidification (coagulation) allows the oil-bearing cells to come together and flow more easily on application of pressure.
· Fruit cooking weakens the pulp structure, softening it and making it easier to detach the fibrous material and its contents during the digestion process. The high heat is enough to partially disrupt the oil-containing cells in the mesocarp and permits oil to be released more readily.
· The moisture introduced by the steam acts chemically to break down gums and resins. The gums and resins cause the oil to foam during frying. Some of the gums and resins are soluble in water. Others can be made soluble in water, when broken down by wet steam (hydrolysis), so that they can be removed during oil clarification. Starches present in the fruit are hydrolyzed and removed in this way.
· When high-pressure steam is used for sterilization, the heat causes the moisture in the nuts to expand. When the pressure is reduced the contraction of the nut leads to the detachment of the kernel from the shell wall, thus loosening the kernels within their shells. The detachment of the kernel from the shell wall greatly facilitates later nut cracking operations. From the foregoing, it is obvious that sterilization (cooking) is one of the most important operations in oil processing, ensuring the success of several other phases.
· However, during sterilization it is important to ensure evacuation of air from the sterilizer. Air not only acts as a barrier to heat transfer, but oil oxidation increases considerably at high temperatures; hence oxidation risks are high during sterilization. Over-sterilization can also lead to poor bleach ability of the resultant oil. Sterilization is also the chief factor responsible for the discolouration of palm kernels, leading to poor bleach ability of the extracted oil and reduction of the protein value of the press cake.


Fig. 3 Bunch thresher (Centre de Formation Technique Steinmetz-Benin)
Fig. 4 Fruit sterilizer (Centre de Formation Technique Steinmetz-Benin)



3.1.4 Digestion of the fruit
Digestion is the process of releasing the palm oil in the fruit through the rupture or breaking down of the oil-bearing cells. The digester commonly used consists of a steam-heated cylindrical vessel fitted with a central rotating shaft carrying a number of beater (stirring) arms. Through the action of the rotating beater arms the fruit is pounded. Pounding, or digesting the fruit at high temperature, helps to reduce the viscosity of the oil, destroys the fruits’ outer covering (exocarp), and completes the disruption of the oil cells already begun in the sterilization phase. Unfortunately, for reasons related to cost and maintenance, most small-scale digesters do not have the heat insulation and steam injections that help to maintain their contents at elevated temperatures during this operation.
Contamination from iron is greatest during digestion when the highest rate of metal wear is encountered in the milling process. Iron contamination increases the risk of oil oxidation and the onset of oil rancidity.
3.1.5 Pressing (Extracting the palm oil)
There are two distinct methods of extracting oil from the digested material. One system uses mechanical presses and is called the ‘dry’ method. The other called the ‘wet’ method uses hot water to leach out the oil.
In the ‘dry’ method the objective of the extraction stage is to squeeze the oil out of a mixture of oil, moisture, fibre and nuts by applying mechanical pressure on the digested mash. There are a large number of different types of presses but the principle of operation is similar for each. The presses may be designed for batch (small amounts of material operated upon for a time period) or continuous operations.
3.1.5.1 Batch presses
In batch operations, material is placed in a heavy metal ‘cage’ and a metal plunger is used to press the material. The main differences in batch press designs are as follows: a) the method used to move the plunger and apply the pressure; b) the amount of pressure in the press; and c) the size of the cage.


The plunger can be moved manually or by a motor. The motorised method is faster but more expensive.
Different designs use either a screw thread (spindle press) (Fig. 4, 5, 6) or a hydraulic system (hydraulic press) (Fig. 7, 8, 9) to move the plunger. Higher pressures may be attained using the hydraulic system but care should be taken to ensure that poisonous hydraulic fluid does not contact the oil or raw material. Hydraulic fluid can absorb moisture from the air and lose its effectiveness and the plungers wear out and need frequent replacement. Spindle press screw threads are made from hard steel and held by softer steel nuts so that the nuts wear out faster than the screw. These are easier and cheaper to replace than the screw.
The size of the cage varies from 5 kg to 30 kg with an average size of 15 kg. The pressure should be increased gradually to allow time for the oil to escape. If the depth of material is too great, oil will be trapped in the centre. To prevent this, heavy plates’ can be inserted into the raw material. The production rate of batch presses depends on the size of the cage and the time needed to fill, press and empty each batch.
Hydraulic presses are faster than spindle screw types and powered presses are faster than manual types. Some types of manual press require considerable effort to operate and do not alleviate drudgery.
3.1.5.2 Continuous systems
The early centrifuges and hydraulic presses have now given way to specially designed screw-presses similar to those used for other oilseeds. These consist of a cylindrical perforated cage through which runs a closely fitting screw. Digested fruit is continuously conveyed through the cage towards an outlet restricted by a cone, which creates the pressure to expel the oil through the cage perforations (drilled holes). Oil-bearing cells that are not ruptured in the digester will remain unopened if a hydraulic or centrifugal extraction system is employed. Screw presses, due to the turbulence and kneading action exerted on the fruit mass in the press cage, can effectively break open the unopened oil cells and release more oil. These presses act as an additional digester and are efficient in oil extraction.


Moderate metal wear occurs during the pressing operation, creating a source of iron contamination. The rate of wear depends on the type of press, method of pressing, nut-to-fibre ratio, etc. High pressing pressures are reported to have an adverse effect on the bleach ability and oxidative conservation of the extracted oil.
3.1.6 Clarification and drying of oil
The main point of clarification is to separate the oil from its entrained impurities. The fluid coming out of the press is a mixture of palm oil, water, cell debris, fibrous material and ‘non-oily solids’. Because of the non-oily solids the mixture is very thick (viscous). Hot water is therefore added to the press output mixture to thin it. The dilution (addition of water) provides a barrier causing the heavy solids to fall to the bottom of the container while the lighter oil droplets flow through the watery mixture to the top when heat is applied to break the emulsion (oil suspended in water with the aid of gums and resins). Water is added in a ratio of 3:1.
The diluted mixture is passed through a screen to remove coarse fibre. The screened mixture is boiled from one or two hours and then allowed to settle by gravity in the large tank so that the palm oil, being lighter than water, will separate and rise to the top. The clear oil is decanted into a reception tank. This clarified oil still contains traces of water and dirt. To prevent increasing FFA through autocatalytic hydrolysis of the oil, the moisture content of the oil must be reduced to 0.15 to 0.25 percent. Re-heating the decanted oil in a cooking pot and carefully skimming off the dried oil from any engrained dirt removes any residual moisture. Continuous clarifiers consist of three compartments to treat the crude mixture, dry decanted oil and hold finished oil in an outer shell as a heat exchanger. (Fig. 10, 11, 12)







Fig. 9 Manual vertical press (O.P.C., Cameroon)
Fig. 10 Motorised horizontal screw press (Centre Songhai, Benin)
Fig. 11 Combined digester and motorised hydraulic press (Technoserve/Cort Engineering, Ghana)


Fig. 12 Flushing extractor (Cort Engineering Services, Ghana)







Summary of Unit operations

Unit operation
Purpose
1.
Fruit fermentation
To loosen fruit base from spikelets and to allow ripening processes to abate
2.
Bunch chopping
To facilitate manual removal of fruit
3.
Fruit sorting
To remove and sort fruit from spikelets
4.
Fruit boiling
To sterilize and stop enzymatic spoilage, coagulate protein and expose microscopic oil cells
5
Fruit digestion
To rupture oil-bearing cells to allow oil flow during extraction while separating fibre from nuts
6
Mash pressing
To release fluid palm oil using applied pressure on ruptured cellular contents
7
Oil purification
To boil mixture of oil and water to remove water-soluble gums and resins in the oil, dry decanted oil by further heating
8
Fibre-nut separation
To separate de-oiled fibre from palm nuts.
9
Second Pressing
To recover residual oil for use as soap stock
10
Nut drying
To sun dry nuts for later cracking

Fig. 13 Clarifier tank (O.P.C., Cameroon)




Fig. 14 Clarifier tank (Nova Technologies Ltd., Nigeria)
Fig. 15 Oil filter (Faith Engineering Workshop, Nigeria)






Fig. 16 Palm nut cracker (AGRICO, Ghana)
Fig. 17 Palm nut cracker (NOVA, Technologies, Nigeria)







3.2 Process equipment design and selection criteria
In designing equipment for small-scale oil extraction one of the key factors to consider is the quality required. ‘Quality’ is entirely subjective and depends on the demands of the ultimate consumer. For the edible oil refining industry the most important quality criteria for crude oil are:
·         low content of free fatty acids (which are costly to remove during oil refining);
·         low content of products of oxidation (which generate off-flavours);
·         readily removed colour.
The most critical stages in the processing sequence for a processor seeking to satisfy these criteria are: bunch sterilization as soon as possible after harvest; and effective clarification and drying of the crude oil after extraction.
By contrast, for the domestic consumer of crude palm oil, flavour is the primary quality factor. This is boosted by the fermentation that takes place within the fruit when the bunches are allowed to rest for three or more days after harvesting. Thus sterilization immediately after harvesting is not a crucial consideration. Herbs and spices for flavour are introduced during the oil-drying phase of operations to mask off-flavours. Therefore rigid process control during oil clarification need not be prescribed or incorporated in the design.
The free fatty acids and the trace tocopherols contained in the crude palm oil after natural fermentation also have a laxative effect, which is desirable for African consumers for whom synthetic substitutes are a luxury. The acidity imparts a ‘bite’ to the oil which some consumers prefer. Thus the quality requirements of one market, leading to certain processing imperatives, may conflict with those of another market.
The traditional manual methods are normally referred to as ‘low technology’ production. The mechanised units are likewise referred to as ‘intermediate technology’ production.
The village traditional method of extracting palm oil involves washing pounded fruit mash in warm water and hand squeezing to separate fibre and nuts from the oil/water mixture. A colander, basket or a vessel with fine perforated holes in the bottom is used to filter out fibre and nuts. The wet mixture is then put on the fire and brought to a vigorous boil. After about one or two hours, depending on the volume of material being boiled, the firewood is

taken out and the boiled mixture allowed to cool. Herbs may be added to the mixture at this point just before reducing the heat. On cooling to around blood temperature, a calabash or shallow bowl is used to skim off the palm oil. Because of the large quantities of water used in washing the pulp this is called the ‘wet’ method.
A mechanical improvement, based on the traditional wet method process, is achieved by using a vertical digester with perforated bottom plate (to discharge the aqueous phase) and a side chute for discharging the solid phase components. The arrangement combines digestion, pressing and hot water dilution into one mechanical unit operation.
The ‘dry’ method uses a digester to pound the boiled fruit, which is a considerable labour-saving device. The oil in the digested or pounded pulp is separated in a press that may be manual or mechanical. Motorised mechanical presses are preferred, whether hydraulic or screw type.
Most medium- and large-scale processing operations adopt the ’dry’ method of oil extraction. This is because the fibre and nut shells may immediately used to fire the boiler to generate steam for sterilization and other operations, including electricity generation. If the huge volumes of fibre and shells are not used as boiler fuel, serious environmental pollution problems may result. Too much water in the fibre increases the amount and cost of steam required to dry the fibre. Hence the preference for the dry method in plants handling more than six tonnes FFB per hour.
Processing machinery manufacturers tend to make machines to fit individual processing operations. However, recent developments have been toward the manufacture of integrated machines, combining several process operations such as digestion, pressing and fibre/nut separation into one assembly. It is found that these machines fit into two key process groupings: batch and semi-continuous processes.








             Schematic of processing models and associated machinery
    





 







NB: NOS = Non -oily solids entrained in oil such as coagulated protein, gums and resins, etc.
The extraction of palm oil from boiled palm fruit can be accomplished by handling successive batches of materials or continuously feeding material to the machines.

3.2.1 Batch systems
The batch systems work directly on successive loads of boiled fruit to extract oil in one operation for clarification. The ‘wet’ method uses a vertical digester (Fig. 11) with a perforated bottom plate to pound a batch of fruit and then flush out the oil and other non-oil solids from the mashed pulp with hot water. The direct screw-press is designed to pound a batch of boiled fruit in the entry section of the machine while exerting pressure on the mashed pulp in another section to expel the palm oil in one operation.
The advantage of the wet system is that it is simple and completely leaches all oil and non-oily solid substances that can be carried in the fluid stream out of the digested mash to give clean and separated nuts and fibre. The aqueous effluent from the vertical digester goes directly to the clarification stage of processing. The amount of water needed to flush

the pulp is normally the same as that required for diluting the viscous oil that comes from the mechanical press in preparation for clarification. An inexperienced operator may use too much hot water to leach out the oil and thus consume unnecessary wood fuel.
The ‘wet’ method yield of palm oil is severely reduced when the wash water is cold. In the course of digesting the fruit mash, in the presence of water, there is increased tendency to form an oil/water emulsion that is difficult to separate from the fibre mass. The emulsified oil loss in the fibre can be substantial if care is not taken to ensure full loading of the digester. Vertical flushing digesters, requiring loading and discharging of a specific amount of material, can thus only be used in a batch operation.
3.2.2 Semi-continuous systems
Continuous systems work sequentially, with one operation feeding directly into another, related to the arrangement and timing of machine operations. Careful engineering of unit operations is required to minimise discontinuities in the feeding of one stage into another. Otherwise some machines have to be stopped periodically for other stations to catch up. When there are discontinuities in the flow of materials between process stations the operations are known as semi-continuous. The dry extraction systems with separate digestion and pressing stations are usually semi-continuous.
Also when digestion and pressing stations are combined into an integrated unit and there is discontinuous feeding of boiled fruit to the digester inlet the operation is termed “semi-continuous”. Once operations have been integrated to attain full continuity the capital investment capacity of small-scale operators has been surpassed, because both machinery and working capital for raw material increases greatly with the increased level of mechanisation.
The dry systems do not need much water for processing, although they have the disadvantage of leaving substantial residual oil in the press cake. The oil content of the press cake can be quite considerable (2-3 percent), depending on the type of press used and the strength of manual operators.
The efficiency with which the various presses can extract oil ranges from 60 to 70 percent for spindle presses, 80-87 percent for hydraulic presses and 75-80 percent for the Caltech screw-presses. The first-pressing oil extraction rates also range from 12 to 15

percent for the spindle-presses, 14-16 percent for hydraulic presses and 17-19 percent for the motorised screw-presses. (Rouziere, 1995)
In many instances the first press cake is then sorted to remove the nuts, and the fibre is subsequently subjected to a second pressing to obtain more oil (an additional 3 to 4 percent on FFB). The second press oil is generally of lower quality, in terms of free fatty acid content and rancidity. Such low-grade oil is used in soap-making. Some village processors undertake the traditional hot water washing of the entire press cake immediately after pressing instead of sorting fibre and second pressing.
Local manufacturers have developed a wide range of machinery and equipment for processing palm oil and palm kernel to fit any budget. All the relevant unit operational machines can be produced to various degrees of finish and quality in the Sub-Region. It is the combination of the unit operation into an affordable process chain that distinguishes the manufacturers and their supplies.
From traditional technologies that rely solely on manual labour and simple cooking utensils, raising the level of mechanization depends largely on a balance between the quantity of bunches available for processing in a given locality and the money available for investment in machines.
The first consideration should be the availability of raw materials and how to compute the processing scale. Knowing the optimum scale of operations, it is then possible to consider the type of processing techniques. The higher the technology, the more skilful operators will be required to handle the machines. These technical considerations should lead to the equipment selection and examination of the capital investments needed to acquire the necessary machines.
3.3 Plant sizing
Assume a Village Group decides to plant oil palm and establishes a program to plant a certain number of seedlings each year over a seven-year period. In the third year the first set of trees begin to bear fruit. The community wants to establish a processing mill and they call an expert. How is the estimation made of the size and type of processing unit required by the community?

Start by establishing the block of planted areas by year so the age of the trees may be determined. The oil palm tree begins to bear fruit from the third year and the yield per tree increases progressively with age until it peaks around 20 years. The yield begins to decline from year 25 through 40 when the economic life of the tree ebbs.
Table 3 describes the potential yields of palm fruit bunches (in metric tonnes) from the planted hectares per year. Estimates in Table 3 are used to calculate the expected annual yield for each annual block. For example, 8 700 seedlings planted in 1998 began to yield fruit in 2000 at the rate of 3 tonnes per hectare to give 198 tonnes for the year. By Year 7 all planted areas will be in production, at different yield rates. The estimated annual yield per planting block is calculated and then the column for the year is added to give the potential raw materials available for processing. For example, in Year 7, when all planted blocks are yielding fruit, the total is 8 919 metric tonnes (see the row designated ‘TOTAL’). How the annual yield is distributed over the entire year needs to be determined in order to know which period demands the attention of processors.
The oil palm tree yield is distributed over the entire year. Most of Central and West Africa experience two rainfall seasons. The oil palm bears fruit in response to the rainfall pattern and hence there are two peak harvesting periods in these regions. Southern hemisphere tropical monsoon regions such as Malawi, Zambia and South East Asia experience only one long rainy season and therefore tend to have a single peak-harvesting season.
For Central and West Africa the annual monthly distribution pattern for produce is expected to show the following variations:
Month
Percent yield
Seasonal contribution
March
9

April
12

May
16
50 %
June
13

July
8

August
7

September
8
34 %
October
11




November
7

December
5

January
3
16
February
1



In the peak harvesting month it is estimated that 12 to 16 percent of the annual yield is generally available for processing. The plant that is installed must be capable of processing the peak month output, which is generally estimated as 15 percent of the annual output. Conservatively, it is estimated that the plant will work two shifts during the peak season.

Table 3: Estimated annual yield per hectare (from year of planting)
Year
1
2
3
4
5
6
7
8
9
10
11
12
15
20
Estimated yield
(Tonnes)
--
--
3.0
4.25
5.5
6.0
7.25
8.2
8.6
9.5
10.5
11.0
12.5
13.5
Table 4: Estimated FFB yields after planting and related plant capacity
Year/yield in metric tonnes
Hectares
1
98
2
3
4
5
6
7
8
9
10
11
12
15
20
66
--
-
198
281
363
396
479
541
568
627
693
726
825
891
190

-
-
570
808
1 045
1 140
1 378
1 558
1 634
1 805
1 995
2 375
2 565
800


-
--
2 400
3 400
4 400
4 800
5 800
6 560
6 880
7 600
8 800
10 000
400



--
--
1 200
1 700
2 200
2 400
2 900
3 280
3 440
4 400
5 200
400




--
--
1 200
1 700
2 200
2 400
2 900
3 280
3 440
5 000
Total


198
851
3 571
6 041
8 919
10 619
12 526
14 121
15 558
17 041
19 840
23 656
Peak Month


29.7
128
536
906
1 338
1 593
1 879
2 118
2 334
2 556
2 976
3 548
Plant
Capacity/hr Plant


0.09
0.4
1.7
2.8
4.2
5.0
6.0
6.6
7.5
8.0
9.5
11.0
Source: Poku, K. Feasibility study on Malawi palm oil mill establishment

In Year 3 there is the potential of processing 198 tonnes of fresh fruit bunches. Assuming that the total quantity were to be processed in one location over a 20-day period using 8 hours in the day, we would need a processing unit that handles 186 kg per hour, or 93 kilos/hr if the choice was made to operate 16-hours per day. Table 4 shows capacity based on a 16-hour working day. For this capacity a wet type digester or the dry spindle-press operation would be recommended. By Year 5 the community would require a fully mechanised mill using motorisedDIGESTERS and presses.


Before the sixth year the community would have to decide whether they want to stay in the small-scale milling category or move up to a medium-scale operation using a continuous system of machines. If the option is to stay small-scale then the community will need to place orders for additional small-scale processing modules. The new set of processing machines can be placed to run alongside the existing facility or located in another village to minimise bunch transportation costs.
The best plant size option for rural Africa is still unknown. Large-scale operations normally require high-skilled labour and management expertise. Most villages do not have such a pool of skilled labour. The villages also lack the social infrastructure such as good accommodation, schools and hospitals that would attract high-skilled labour. Thus, in order to establish a large-scale processing operation, labour needs to be imported from other parts of the country. To maintain these ‘alien’ workers and managers a provision must be made in the capital investment for housing, schools and clinics near the processing estate. Some of the schooling and medical services must be extended to the whole community or there will be resentment towards the ‘alien’ workers.
Large-scale operations also require rapid transportation of harvested bunches to the processing site, hence the need for investment in roads and civil works. The establishment of large-scale operations creates an overhead burden that is beyond the capacity of a village community.
Many of the large-scale operations established in the early 1970s have declined along with the national economies of African nations. The cost structure of these establishments has rendered the output products non-competitive on the international market.
Today decentralised small-scale processing operations are preferred in most parts of Africa.

3.4 Process technology/capital investment considerations
Once the required plant size has been determined, the next item to consider is the amount of money required to buy the necessary machinery. The more money available, the more units can be bought, to minimise the drudgery of processors.
The wide array of machinery options makes it possible for a processor to start operations with a manual spindle-press used to pound the palm fruit. Another may start with a single motorised vertical wet processDIGESTER. Further up the investment scale are those who can afford the combination horizontal digester and screw-press or combination horizontal digester and hydraulic press along with the associated sterilizers, threshers, and oil clarifiers. Another combination that is yet to be tried is the combination of a horizontal motorised screw-press in combination with a second stage vertical flushing digester for maximum palm oil extraction and fibre/nut separation.
Type of unit
Key machines
Rated capacity
(k g FFB/hr)
Extraction efficiency
(%)
Capital investment
(US$)
Single batch unit




Dry
Spindle
100-200
55
150-200
Hydraulic
200-300
67-74
5 000-7 000
Screw
250-400
77.4
1 500-6 000
Wet
Vertical digester
500-800
80-90
1 500-2 500
Dry
Motorised horizontal digester
(only)
500-1000
55
2 500-3 000
Dual separate units




Dry
Digester + Spindle presses
200-300
60-70
3 000-5 000
Digester + hydraulic press
400-800
67-78
7 000-10 000
Semi-continuous combined units
Motorised digester +
500-850
70-87
10 000
Dry
hydraulic + spindle-press


-15 000
Digester + screw-press
500-850
76-90
12 000-15 000
Source: Compiled from various sources






The extraction efficiency refers to the percentage of oil that the machine can extract in relation to the total oil in the boiled fruit. The type of fruit mix (Dura/Tenera) presented for processing greatly influences the extraction efficiency of all units.
Many of the installations that use single spindle and manual hydraulic press units require manual pounding with wooden mortars and pestles, foot stomping, etc. Thus the throughput capacity of such a mill is determined by the manual pounding rate. The presses are usually not mechanised and hence the processing capacity of the press is also limited by the size of the press cage and the operator’s energy level for turning the press screw or pumping the hydraulic fluid mechanism.
Another limiting condition is the affordability of capital equipment. Where the capital equipment cost exceeds a certain value villagers will shy away from taking loans to purchase the combination of operations. The designer must bear in mind that until the rural/urban migration of village youth is reversed the villages will be mainly populated by the elderly. These elders are naturally reluctant to take up long-term loans and the local banks are reluctant to lend to a predominantly aged community group. In Ghana, for instance, capital equipment costs should be around US$10 000 to be affordable to village-based individuals or groups.
Because of the need to keep initial capital investment to a bare minimum it is imperative that unnecessary mechanised unit operations are eliminated. Work that can be done manually - without overly taxing profitability - should be, thereby taking advantage of surplus labour and creating a stream of wages and salaries in the local community. Operations that are usually associated with drudgery by processors, such as fruitDIGESTION and oil extraction, can be mechanised. Other less strenuous tasks, such as fruit separation and fibre/nut separation, can be contracted out to elderly women and unemployed youth.
“Small-scale” does not necessarily mean a significant decrease in efficiency. It does, however, mean a reduction in working capital and operating costs. The small mills can be placed at the heart of local communities, minimising reliance on vehicular transport that is normally unavailable in rural communities, given the poor condition of road networks and other infrastructure. This increased accessibility serves to dramatically reduce fruit spoilage and consequent post-harvest losses.

Culturally, men cultivate or produce while women process and sell. Traditionally, women decide the form in which the produce is to be traded and hence determine the degree of processing they are willing to undertake. These decisions form the basis of traditional technologies upon which innovations are to be derived.
The operating philosophy for equipment innovation should therefore be an attempt to develop machinery to alleviate the drudgery of female processors while providing additional avenues for the employment of those displaced by the improved technologies, keeping some operations labour-intensive. It is therefore important to mechanise the key drudgery-alleviation equipment that can be easily handled by women.
Prime mover power is also a major consideration. Most villages do not have electricity and hence the diesel engine is the main source of power. Thus, for cost reasons there cannot be a multiplicity of these engines to drive the required unit operations. Where there is the need to drive several machines the answer could be to use diesel power to generate electricity. The cost and maintenance of this power source would eliminate most small-scale processors and communities. The power source in such instances acts as a limitation to the number of unit operations that can be mechanised and powered. Systems of pulleys and gears to drive operational machines should be actively considered when designing for village based groups.


The Supply Chain of the Palm Oil Industry in Malaysia

$
0
0
6.1 Introduction

The major players in the palm oil industry in Malaysia are shown in Figure 7; the players are grouped under the following clusters:
• Upstream producers – essentially involved in the cultivation of oil palm, production of fresh fruit bunches (FFB) and processing them into crude palm oil and palm kernel.
• Downstream producers – palm oil refiners, palm kernel crushers, manufacture of palm-based edible products and specialty oils and fats,
• Exporters and Importers of palm oil
• Customers - institutional buyers and retail customers and investors
• Industry organisations representing the interests of the upstream and downstream producers
• Government agencies associated with the oil palm industry, particularly in respect of research and development and regulatory functions.
• Other players who have an interest and/or stake in the oil palm industry (NGOs, unions etc)

Profiles of the major players is given in Part B of the report; the write-up of industry organisations and Government agencies is covered on the following headings:
• Introduction
• Vision / Mission
• Role and Function
• Organisation
• Funding
• Activities
• Contact Information
The profile of the major plantation companies is presented as a 2-page fact sheet, covering the following aspects:
• Background of the company
• Corporate information
• Triple bottom line dimensions
  - Economic aspects
  - Environmental aspects
  - Social aspects
  - Stakeholder engagement
• Crop area statement
• Oil palm crop productivity and production (5-year record)
• Financial performance (5-year record)

The profiles of organisations and companies are based on published or public domain information, the major reference source of being recent company annual reports, corporate web sites and press reports.

Figure 7 Major players in the palm oil supply chain in Malaysia

         

















The characteristics and roles of the players within each cluster are discussed in the following sections.

6.2 Upstream Producers

6.2.1 Plantation Companies/Private Estates

Of the 3.38 million hectares of oil palm planted in Malaysia in 2000 (Table 11), 60% were under private ownership, most of which are by plantation companies. The private sector has been the main driver for growth in the development and production of palm oil in the last two decades. From 1980 to 2000, the planted area under plantation had increased by more than 3.6 times, from 557,659 hectares to 2,024,286 hectares, most of the new developments being in the states of Sabah and Sarawak.

Table 11: Distribution of Oil Palm Planted Area (Hectares)

1980

1990

2000


Hectares

%
Hectares

%
Hectares

%
Private Estates
557,659

52.1
912,131

44.9
2,024,286

60.0
Govt. Schemes:









FELDA
316,550

29.6
608,100

30.0
598,190

17.7
FELCRA
18,851

1.8
118,512

5.8
154,357

4.6
RISDA
20,472

1.9
32,582

1.6
37,011

1.1
State Schemes
67,281

8.0
174,456

8.6
242,002

7.1
Smallholders
70,446

6.6
183,683

9.1
320,818

9.5
TOTAL
1,051,259

100.0
2,029,464

100.0
3,376,664

100.0

Source: MPOB

The sizes of plantation companies vary considerably from a few hundred hectares to more than 100,000 hectares; the largest plantation companies are given in Table 12. Most of these companies are listed on the Main Board of the Kuala Lumpur Stock Exchange; Kuala Lumpur Kepong Berhad and Highlands & Lowlands Berhad are also listed on the London Stock Exchange while United Plantations is listed on the Copenhagen Stock Exchange. Based on planted areas, the largest plantation companies are Kumpulan Guthrie Berhad, Golden Hope Plantations Berhad, Kuala Lumpur Kepong Berhad, and IOI Corporation Berhad. The profiles of selected public listed companies are presented in Part B.

Besides size, plantation companies can be stratified according to their historical background, ownership and type of core business.

Historical perspective: The late 19thcentury and early 20thcentury saw the beginnings ofmany present day plantation companies in Malaysia. The pioneer planters were essentially Europeans and Chinese, the latter being credited for commercial planting of rubber through the establishment of a 17 ha estate near Batu Lintang in Melaka in 1896 by Tan Chay Yan (Tate, 1996). Companies that could trace their roots to the colonial era include Sime Darby Berhad which was founded by William Middleton Sime and Henry Darby in 1910. Kumpulan Guthrie Berhad’s history goes back to 1821 when Alexander Guthrie set up Guthrie & Co as a trading company and as agents for 12 British companies with plantations in the then Malaya. Golden Hope Plantations Berhad had its beginnings in Harrisons & Crosfield Plc which started as a

tea and coffee trading company in 1844 and as managing agents for UK-domiciled plantation companies from the early 1900s until their transfer of ownership to the present company in 1982. Kuala Lumpur Kepong Berhad also started as a UK domiciled company in 1906. Other European pioneers of Malaysian plantation companies include a

Dane, Aage Westenholz, who in 1906 established Jendarata Rubber Estate in Lower Perak which formed the foundation for present day United Plantations Berhad. A comprehensive account of the history of the plantation industry and its players for over a century is given in “The RGA history of the plantation industry in the Malay Peninsula” (Tate, 1966).

From the 1970s, several ‘home grown’ plantation companies entered the industry, some examples being Asiatic Development Berhad, Austral Enterprises Berhad, Hap Seng Consolidated Berhad, IOI Corporation Berhad, PPB Oil Palms Berhad , Tradewinds (M) Berhad and IJM Plantations Sdn Berhad.

Among the more recent players, IOI Corporation Berhad has demonstrated the most impressive growth, starting with zero base, with an initial acquisition of a 1,214 hectare estate in 1983. Through a series of acquisitions of established plantation

companies over a 20-period, IOI became a major plantation -based corporation with a total planted area of 100,954 hectares, of with 98% have been planted under oil palms (as at 30th June, 2002). The acquisition of 27,880 ha from Dunlop Estates with 13 estates, 2 mills, 2 factories and a research station in 1990 was probably IOI’s most strategic thrust into plantations

Austral Enterprises Berhad’s (Austral) emergence as a major player was through the diversification strategy of its parent company, I & P Berhad, whose earlier core business was in property development. Austral spearheaded the commercial development in Sarawak and today has 14 estates covering a planted area of 31,588 hectares in the state, or 57% of the company’s total planted area of 55,267 hectares.

Asiatic Development Berhad (Asiatic) is another company that started from zero base, commencing business in April, 1980 with the acquisition of the Rubber Trust Group of 3 Hong Kong domiciled rubber companies with a total area of about 13,700 hectares of developed plantation land in Peninsular Malaysia. Through a series of acquisitions of plantation companies, had accumulated a sizeable land bank within a 20- year period, most of which is located in Sabah. Asiatic has a significant area under oil palm in the Kinabatangan District.

Hap Seng Consolidated Berhad (Hap Seng) and IJM Plantations Sdn Bhd are relatively new players with plantations located entirely in Sabah. Hap Seng’s plantations are mainly in the Kinabatangan District. IJM Plantations which was incorporated in 1985 is the Plantations Division of diversified group, IJM Corporation Berhad (IJM) . It has a total area of 19,914 hectares planted with oil palms in 14 estates near Sandakan, Sabah.

Prior to the entry of PPB Oil Palms Berhad into the plantations industry in the mid-1980s, its parent company, PPB Group had been involved in the trading and refining of palm oil with raw materials sourced from various plantation companies. The development of oil palm plantations in Sabah and Sarawak was taken as a logical step to synergise the Group’s refining and trading activities.

Tradewinds (M) Berhad is the plantations arm of hotels and property owner and operator, Pernas International Holdings Berhad. Incorporated in 1974, Tradewinds became a public company in 1987 and was listed on the KLSE in March 1998. The company has a planted area of about 50,000 hectares of oil palm; however, with the recent acquisitions of more than 64,000 hectares of forest land in Sarawak and Indonesia, Tradewinds has set its sights to be a major upstream player in the region in the near future.

Ownership

Ownership of plantation companies in Malaysia can be broadly grouped as follows:

       Companies with substantial or controlling interests by Permodalan Nasional Berhad (PNB) or the National Equity Corporation and its unit trust funds
       Non-PNB controlled companies, owned by Malaysian companies or individuals
       Companies with substantial or controlling interests by foreign shareholders

PNB was established in March, 1978 as a wholly -owned subsidiary of Yayasan Pelaburan Bumiputra (Bumiputra Investment Foundation) as the Government’s investment vehicle for implementing the New Economic Policy (NEP) that was formulated in 1970.(See 4.8, page44) As part of the process of Malaysianisation of the country’s assets, PNB negotiated withforeign -domicled plantation companies for a transfer of ownership to Malaysians in the late 1970s. Transition of ownership was generally smooth and amicable, at mutually agreed equity prices, except in the case of Kumpulan Guthrie Berhad which came under Malaysian ownership through a ‘dawn raid’ at the London Stock Exchange in 1981. In the case of Sime Darby Berhad, the transfer of controlling interests was done through Perbadnan Nasional Berhad (PERNAS). In 1979. Plantation companies that are currently under the control of PNB and its unit trust funds include:
Company
No of shares
% of total



Sime Darby Berhad
1,011,577,232
43.49
Golden Hope Plantations Berhad
548,235,998
53.01
Kumpulan Guthrie Berhad
732,376,000
73.2
Austral Enterprises Berhad*
60,065,555
41.3

* Through PNB’s 71.51% in Austral’s parent company



Large non-PNB plantation companies under Malaysian ownership include Kuala Lumpur Kepong Berhad, IOI Corporation Berhad, Hap Seng Consolidated Berhad and Asiatic Development Berhad and PPB Oil Palms Berhad. These companies are effectively controlled by holding companies which have their roots in family-owned companies.

A few companies have substantial or controlling foreign shareholding, notable examples being United Plantations Berhad with about 43% of its equity held by Danish shareholders and Pamol Plantations Sdn Bhd, which is Unilever’s plantation

interest in Malaysia. Unilever NV recently announced its intention to dispose all its plantations in Malaysia as part of its strategy to divest from non-core business. It has placed all its plantations in Peninsular Malaysia and Sabah covering a titled area of more than 21,700 hectares for bidding; the estimated worth being between RM 500 to RM 800 million. (News Straits Times, 18.09.02)

Core Business

Many plantation companies are considered ‘pure’ plantation companies. Although several of them have diversified into resource -based manufacturing and property development, converting their plantations near urban areas into real estates, their revenues and profits are generated mainly from plantation operations, especially from oil palm. However, some companies have gone down further the diversification path and have moved away from their plantation roots to become conglomerates with a variety of resource and non-resource based core businesses. The most notable example is Sime Darby Berhad which stated as an early pioneer in plantations in 1910; it is Malaysia’s own multinational conglomerate with core businesses in tyre manufacturing, motor vehicle assembly and distribution, property development in the energy sector, besides maintaining its presence in the plantations industry. However, the contribution from the plantations to the group’s earnings is not significant. The contribution from the Plantations Division for FY 2001 and 2000 were 6.6% and 13.8% respectively but this is not a true indication of the segment’s share as the Plantations Division itself has diverse business operations in commodity trading, refining, property development and medical services.

IJM Corporation Berhad is another diversified group with core businesses in plantations, construction (civil engineering) infrastructure (highways, airports, bridges etc), property development, manufacturing and quarrying and international ventures in construction and infrastructure development. The contribution of the Plantations Division to the Group’s operating revenue and profit before tax were 6.1% and 3.2% respectively.



Among the newer players, IOI Corporation Berhad has diverse operations in plantation, property development and investment, industrial gases, oleochemicals and leisure. For FY 2001 and 2002, non -plantations business contribute to 77% and 63% respectively to the Group’s profit before tax. With the recent acquisition of Loders Croklaan BV from Unilever, IOI has become a global producer and supplier for specialty oils and fats, with market access to Europe, North America and Latin America.

Plantation companies can be further differentiated by the location of their upstream activities as shown in Table 12. Owing to the availability of land and supply of workers, both at lower costs than in Malaysia, many companies have ventured into the development of oil palm plantations in Indonesia. However, except for Kumpulan Guthrie Berhad, actual areas developed by these companies are considerably lower than those cited by Wakker (2000); a good case in point is Golden Hope Plantations Berhad which has todate developed only 8.014 hectares of oil palm plantation in Kalimantan against the proposed area of 122,000 hectares. The political turmoil and economic uncertainty that followed after the Asian financial crisis in 1997 could have deterred the Malaysian companies from proceeding with their proposed developments in Indonesia. For example, Kuala Sidim Berhad, stated in its 1999 Annual Report that “future development will be confined to 1,000 hectares per year until the political and economic situation becomes more apparent.” but, as the situation remained uncertain, the Group announced in its 2000 and 2001 Annual Reports that further developments in Indonesia will be postponed until scoio -political stability returns. The exception is Kumpulan Guthrie which expanded its planted area in Indonesia by about 14 times with the acquisition of Holdiko Plantations (now renamed as Minamas Plantations) in 2001.

Based on reported trends in land acquisition and planned development, some companies can be expected to remain essentially upstream players, particularly Kumpulan Guthrie Berhad and Tradewinds(M) Berhad. With the acquisition of Minamas Plantations Kumpulan Guthrie has become the largest plantation company with a total land bank of more than 322,000 hectares. However, it should be appreciated that it is not entirely practical to classify plantation companies as either upstream or downstream players as many of them are both upstream and downstream operations. (SeeTable 13, page35)


6.2.2 Government Schemes

Federal Land Development Authority (Felda)

Among the public sector agencies, Felda (Profile GOV.1, page 110) has played the most significant role in the development of oil palm in Malaysia. In fact, it is the largest player in the industry in Malaysia, accounting for 17.7%2of the total planted area (Table 11) and about 20.6% of the palm oil produced in Malaysia in 2001. Felda was the main land development agency that was established in 1956 with the socio-economic mandate of developing forest land for the resettlement. From its formation until the mid-eighties, Felda’s primary activity was the development of agriculture-based settlements, planted with plantation crops, initially with rubber and subsequently with other crops, particularly oil palm from primary forests and logged over forest land. The first planting of oil palm was on 8,100 hectares in the Taib Andak Complex in Pahang, Peninsular Malaysia in 1961. It spread its activities to Sabah in the early 1980s and had developed complexes at Umas and Kalabakan near Tawau and the Sahabat complex in the Dent Peninsular, east of Lahad Datu (Tunku Shamsul & Lee,1980).

Following a change in the organisation’s strategy in the 1980s, Felda changed its focus to commercial development management of plantations on a commercial basis. The 1980s saw rapid expansion in the area developed of oil but there had been no significant new land developments by Felda in the last decade and the major activity has been replanting of the older schemes in Peninsular Malaysia. The total area replanted until 2000 was 117,676 hectares (Felda 2000 Annual Report).

Under the current organisational structure, the Felda Group consists of Felda which is responsible for the management of the schemes emplaced settlers and Felda Holdings Sdn Bhd which is the corporate arm for the group. As at 2000, Felda has emplaced 103,001 settlers in 275 schemes, of which 67% have been planted with oil palm. Felda is also responsible for settler activities, which include settler community development, new economic activities to enhance settler income and education.


Felda Holdings Sdn Bhd is the holding company for 36 wholly owned and associate companies which are divided into the Plantations Group, Palm Industries Group and Enterprises Group. In the Plantations Group, Through these companies, Felda is involved in most aspects of the supply chain of palm oil. It manages 258 plantations covering a total area of more than 354,000 hectares, the produce of which are process in 72 palm oil mills, 6 kernel crushing plants, 7 palm oil refineries to produce cooking oil and 2 margarine plants. It also has refinery operations in Egypt and China. Felda is involved the production of palm-based oleochemicals through a joint venture with Proctor & Gamble. Various subsidiary companies provide support service to the core businesses. The group produces its own planting materials, fertilisers and other agricultural inputs, it has its own research and agricultural, engineering and construction services, transportation and bulking installations. At the end of the chain, Felda has companies for trading and marketing of its products. With the vertical integration of its activities, Felda is essentially an upstream and downstream producer.

Although Felda was established with loans and grants from the Federal Government and international agencies such as the World Bank, it has been self-financing for many years since managing its agricultural operations on a commercial basis. Profits generated from companies under Felda Holdings Sdn Bhd has been ploughed abck to the settlers and Felda through their investment in the Felda Investment Co-operative (KPF) which owns 51% Felda Holdings Sdn Bhd.

Other Government Schemes

The contribution to the production of palm oil by other government land schemes such as the FELCRA Berhad, the Rubber Smallholders’ Development Authority (RISDA), Sabah Land Development Board (SLDB) and Sarawak Land Rehabilitation and Consolidation Authority (SALCRA) is less significant. Among these agencies, FELCRA accounted for 4.6% of the total planted oil palm area in Malaysia.

FELCRA was established under the National Land Rehabilitation and Consolidation Authority (Incorporation) Act 1966 to improve the productivity and livelihood of settlers not covered under Felda. In 1997 it was corporatised and changed its name to FELCRA Berhad to make it commercially oriented while maintaining its original mission for rural progress. It has adopted a business strategy of balancing and synergising social-economic and business activities through a two -prong approach –

a Social Development Programme that focuses on managing existing and sourcing of new areas for agricultural development and the Business-Oriented Programmes on upstream and downstream activities such as processing of palm oil and agro-industries.

RISDA was established in January 1993 under the Rubber Industry Smallholder Development Authority Act, under which RISDA was required to:

       “Administer the Rubber Industry Replanting Fund which was established under Section 3 of the Rubber Industry (Replanting) Fund Ordinance 1952
       Manage and implement Schemes approved under the provisions of the Rubber Industry (Replanting) Fund Ordinance 1952
       Plan and implement all innovations for the smallholder sector”

Although RISDA’s original mandate was for rubber replanting and development on behalf of smallholders, its activities had been extended to include oil palm cultivation; in 2000, the area of oil palm schemes developed and managed by RISDA was 37,011 hectares or 1.1% of the national planted area.

6.2.3 Smallholders

While Felda, RISDA and FELCRA manage schemes for what is known as ‘organised smallholders’, individual smallholders account for about 320,818 hectares of oil palm or 9.5% of the total planted area. Under the RISDA Act 1972, a smallholder is defined as the owner of legal occupier of any land that is 100 acres (40.5 ha) in area. A census of smallholders undertaken in 1992 gave the following profile:
Smallholders
Total numbers:
420,193
Rubber smallholdings:
341,694
Oil palm smallholdings:
37,333
Other crops smallholdings:
41,166
Smallholdings
Total area:
1.289 million ha
Rubber area:
1.044 million ha
Average size:
3.05 hectare


                    Source: Information Malaysia 2000 Yearbook
The interests of individual smallholders are represented by the National Association of Smallholders (NASH).(See Profile OP.1,page 127)




6.3 Downstream Producers

Section 2 of this report included an overview of the wide range of food and non-food products that are produced from the oil palm fruit. The fresh fruit bunches (FFB) from the plantations are to a large extent, processed by the company’s own mills to produce crude palm oil (CPO) and palm kernel (PK). A number of companies have also integrated palm kernel crushing in the mill complex to produce crude palm kernel oil (CPKO). The CPO and CPKO are refined and fractionated to produce a variety of edible oils and fats and non-food applications. Refined palm olein is usually used for producing cooking oils while palm kernel olein is the main feedstock for the production of oleochemicals.

Downstream producers can broadly grouped under plantation-based companies, Felda, independent manufacturing companies and subsidiaries or associates of multinational companies Plantation companies are involved in the downstream processing activities as shown in Table 13.Besides being the largest upstream producer, Felda is a major player in downstream processing, operating seven palm oil refineries, six kernel crushing plants and two margarine plants.

The Malaysia Palm Oil Directory 2002 (MPOPC, 2002) listed 44 companies involved in palm kernel crushing, majority of them are essentially SME scale operators who supply their CPKO to the refining companies or oleochemical producers. There are more than 55 palm oil refining companies in Malaysia (MPOPC, 2002), of which about 18 companies produce more than 75% of the total export of processed palm oil. The largest players are PGEO Edible Oils Sdn Bhd., Ngo Chew Hong Oils & Fats (M) Sdn Bhd, and Pan-Century Edible Oils Sdn Bhd. PGEO Edible Oils is an associate company of PPB Oil Palms Berhad while Ngo Chew Hong is an independent refiner which is also a major manufacturer of palm-based oils and fats. Pan-Century is the subsidiary company of the Birla Group of India.

Major producers of bulk and retail pack cooking oil and palm oil-based products such as shortening, vanaspati (vegetable ghee), margarine are plantation- based companies such as Felda Marketing Services Sdn Bhd, Golden Hope Plantations Berhad, PPB Oil Palms Berhad , Sime Darby Berhad and United Plantations Berhad and independent manufacturers such as Kuok Oils & Grains Pte Ltd and related company, Federal Flour Mills Berhad, Lam Soon (M) Berhad and related company Intercontinental Specialty Fats Berhad, Ngo Chew Hong Oils & Fats (M) Sdn Bhd and

Yee Lee Oils Corporation. Among multinationals, Unilever and Cargill are involved in the edible oil products sector through Unilever (M) Holdings Sdn Bhd and Cargill Palm Products Sdn Bhd respectively.

Among producers of specialty fats, IOI Corporation Berhad is set to be the major player following its acquisition of Loders Croklaan BV. Other producers include PPB Oil Palms Berhad, Sime Darby Berhad, United Plantations Berhad, Intercontinental Specialty Fats Berhad, Southern Edible Oil Industries (M) Sdn Bhd and Cargill Specialty Oil & Fats Sdn Bhd

The largest and most integrated producer of oleochemicals in Malaysia is Palmco Holdings Berhad, a subsidiary of IOI Corporation Berhad. Multinationals have a presence in the oleochemical sector through associate or subsidiary companies such as Akzo & Nobel Oleochemical Sdn Bhd, Cognis Oleochemicals Sdn Bhd (joint venture company between Cognis Oleochemicals of Germany and Golden Hope Plantations Berhad), FPGOleochemicals Sdn Bhd (Proctor & Gamble’s joint venture with Felda) and Uniqema (Malaysia) Sdn Bhd. Other local major producers are Palm-Oleo Sdn Berhad, a subsidiary of Kuala Lumpur Kepong Berhad and Southern Acids (M) Berhad.

6.4 Exporters/Importers

A list of major exporters and importers of Malaysian palm oil is given in the interactive CD ROM edition Malaysia Palm Oil Directory 2002 (MPOPC, 2002) while contact details and other information are available in the hard copy of Malaysia Palm Oil Directory 1999-2000. (MPOPC, 2000). The main importing countries of palm oil are India, Peoples’ Republic of China, European Union, Pakistan, and Egypt. (Table 6, page 12). The major importing companies and organisations by countries are listed in Table 14. In the past, imports of palm oil into India and Pakistan was done mainly by state-owned trading corporations but currently, imports have been privatised to a large extent. In the EU, the Netherlands has the most number of companies importing Malaysian palm oil. Recently, two of its key importers, Unimills B.V. and Loders Croklaan B.V. came under Malaysian ownership by Golden Hope Plantations Berhad and IOI Corporation Berhad respectively.

In general, plantation companies involved in downstream production and manufacturing companies of palm-based products are also exporters of palm oil products. Until recently, exports were mainly in various forms of processed palm oil and there was relatively low volume of export of crude palm oil because of very high export duties. However, in an effort to reduce high stocks of CPO in the country in the past few years, the Malaysian Government has allowed selected companies to export certain quantities of CPO annually without any export duty. The approved volume of duty-free CPO export in 2001 was one million tonnes. Companies exporting CPO include Austral Enterprises Berhad, Golden Hope Plantations Berhad, Kuala Lumpur Kepong Berhad and IOI Corporation Berhad.



Table 14: Major Importers of Malaysian Palm Oil


Country
Company
Algeria
Enterprise Nationale des Crops Gras, Algiers
Australia
Peerless Holdings Pty Ltd, Melbourne
Brazil
Braswey S.A. Industrai E Commercio
Canada
Canbra Foods Ltd, Alberta
China PRC
China  National  Cereals  Oils  and  Foodstuffs  Import  &  Export

Corporation, Shandong; Universal Seeds and Oil Products Company,

Beijing
Ecuador
INASA-Industrial Aceitera, Guayaguil; Palmaoil S.A..,Santo Domingo
Egypt
MISR Gulf Oil Processing, Cairo; Savola Egypt, Cairo
Germany
Henry Lamonte Gmbh, Bremen
Greece
Pavlos N Pettas SA, Patras Achaia
Guatemala
OLMECA SA, Fraijanes
Honduras
Fabrica de Manteca Y Jabon Alantida S.A., La Ceiba
India
Ahmed  Oomerbhoy,  Mumbai;  Hindustan  Lever  Ltd.,  M/S  Dipak

Vegetable Oil Industries Ltd., Gujarat; Pudumjee Agro Industries Ltd,

Mumbai.
Italy
Via Gardizza snc., Ravenna
Japan
Fuji Oil Co Ltd., Osaka; Riken Nosan Kako Co. Ltd., Fukuoka
Lebanon
M.O. Ghandour & Sons SAL, Beirut
Mexico
Cargill de Mexico, S.A.de C.V., Lamas; Ecologia Y Lubricantes S.A. de

C.V., Mexico Nuevos
Netherlands
Algemene Oliehandel (AOH),Utrecht; Bergia-Frites B.V., Roermond;

Cargill B.V. Hardingsdivsie, Roermond; Karishamns B.V.,Koog Ann de

Zaan;  Loders  Croklaan,  B.V.,  Wormerveer;  Mead  Johnson  B.V.,

Nymegan;Noba Vetveredeling, B.V., Zwaneburg; Remia C.V., ZG den

Dolder;romi-Smilfood  B.V.,  Vzaardingen;  Soctek  Nederland  B.V.,

Zaandam; Unichema Chemie B.V., Gouda; Unimills B.V., Zwyndrecht;

Zaanlandse Oileraffinaderji B.V., Zaandam



Pakistan


M/S ACP Oil Mills (Pvt) Ltd., Islamabad; M/S Agro Processors &

Atmospheric Gases (Pvt) Ltd., Karachi
Portugal
Africunha-Imp./Exp..,LDA,  Loures;  Gexpo-Gestao  de  Exp.,  LDA,

Estoril; Mercadafrica-Com. De Exe.E.Imp.,LDA, Lisboa; Mundafrica-

Com. Prod. Alimentares LDA, Lisboa.
Spain
Sociedad Iberica de Moituracion S.A., Madrid
Taiwan
Blessing Brother’s Ind.Co.Ltd; Cheng-I Food Co. Ltd; Chia Hsin Flour

Feed & Vegetable Oil Corp; Flavor Full Foods Inc; Hsei-Yi Co. Ltg;

Makro  Taiwan  Ltd;  Namchow  Ind.Co.Ltd;  President  Hissin  Corp;

Sunjet Religious Developing Co; Taisun Ent.Co.Ltd; TTET Union Corp.
Turkey
Almedar Chemical Industry Inc,
United Arab Emirates
Emirates Refining Company, Sharjah
United Kingdom
Hampshire Commodoties Ltd, Hampshire;Matthews Food plc, West

Yorkshire; Unitrition International, N. Yorks.
USA
Corporacion Bonanza CA; ENIG Associates Inc; Impex Trading Corp;

Liberty Enterprise Inc; Penta Manufacturing Company Inc; Seaboard

Trading & Shipping; Sumitomo Corporation of America
Venezuela
Corporacion Bonanza C.A., Caracas
Source: MPOPC - Malaysia Palm Oil Directory, 1999-2000


4.5 Industry Organisations

The diverse interests of upstream and downstream producers of palm oil and palm-based products and their derivatives are formally represented by a number of industry organisations as shown in Table 15. The profile of each organisation (except for POMA) is presented in Part B of this report; a brief description of their roles and functions is discussed in the following sections.

Table 15: Industry Organisations
Sector
Organisation

Plantations
Malaysian Palm Oil Association (MPOA)

East Malaysia Planters Association (EMPA)



Planters
The Incorporated Society of Planters (ISP)

Independent palm oil millers
Palm Oil Millers Association (POMA)

Palm oil refiners
Palm Oil Refiners Association of Malaysia (PORAM)

Edible oil manufacturers
Malaysian Edible Oil Manufacturers’ Assn (MEOMA)

Oleochemical manufacturers
Malaysian Oleochemical Manufacturers Group (MOMG)

Palm oil promotion
Malaysian Palm Oil Promotion Council (MPOPC)


4.5.1 Plantations

As the plantation industry developed, from the colonial era to present day, various organisations have been formed to represent the interests of relevant groups; the earliest industry organisations include the United Planting Association of Malaysia (UPAM), Rubber Growers’ Association (RGA) and the Malaysian Estate Owners’ Association (MEOA). With the rapid expansion of the oil palm industry from the 1960s, the Malaysian Oil Palm Growers’ Council (MOPGC) was established to represent the plantation companies. With the passage of time and changes in the structure of the industry, there was much overlap in the roles and functions of the four organisations. A rationalisation exercise in 1999 saw the merger of the four major industry organisations into a single body, the Malaysian Palm OilAssociation (MPOA).(Profile ORG.1, page 88)The mandate of this integratedorganisation is, to represent the industry as a single voice and meet the complex needs of the plantation industry more effectively.

Any individual or company which owns a minimum of 40 hectares of a plantation crop is eligible to be a member of MPOA. As on 1st June, 2002, MPOA has more than 100 members with a total area of more than 1.4 million hectares under oil palms This represents more than 70% of the area under private sector ownership. The total members’ planted oil palm area includes more than 354,000 hectares under Felda Plantations Sdn Bhd which is registered as a plantation company.

MPOA represents the industry in several government and statutory bodies and related industry organisations, key representations include membership on the Board of the Malaysian Palm Oil Board (MPOB) and Chairman of the Board of Trustees of the Malaysian Palm Oil Promotion Council (MPOPC). MPOA also has a voice in international organisations on oils and fats such as the National Institute of Oilseed Products (NIOP), International Association of Seed Crushers (IASC), FOSFA International Oils and Fats Committee and the ASEAN Vegetable Oils Club (AVOC).


MPOA activities are focused on a number of priority issues, one of which is environmental concerns and sustainable development; recently, it set up a Working Committee on Environment. MPOA has been in active dialogue with WWF Malaysia on issues pertaining to oil palm and the environment, with particular focus on the development of best management practices in respect of forest and wildlife conservation.

Prior to 1999, the interests of plantation companies in Sabah and Sarawak are mainly represented by the East Malaysia Planters’ Association (EMPA)(ProfileORG.2, page 92). During the exercise on the rationalisation of industry organisations,EMPA resolved to remain as an independent body to serve the needs of East Malaysia - domiciled plantation companies. With the establishment of branch offices of MPOA in Sabah and Sarawak, several plantation companies have since become members of the new pan -Malaysian organisation. While EMPA would continue to serve the unique needs of plantations in East Malaysia, the existence of two industry organisations with broadly similar functions could present the attendant risk of duplication of efforts and representation, particularly on issues of national interest.

Among its activities, EMPA has worked in collaboration with the Ministry of Tourism and Environment Development, Sabah to raise the level of awareness on the environmental issues such as pollution of rivers associated with logging and plantation activities. EMPA was an active participant in WWF Malaysia Partners for Wetlands Forum in April, 2001 on making land use more sustainable in the Lower Kinabatangan Floodplains.

6.5.2 Planters

While  MPOA  and  EMPA  serve  the  interests  of  plantation  companies,  the

Incorporated Society of Planters (ISP) (Profile ORG.3, page 94), was establishedin 1919 to represent the interests of the planters – the estate executives at the management level. From an inaugural membership of 200 planters, the ISP currently has more than 4350 members, 600 of whom are overseas members from 37 countries. With the foresight of its founding


members, ISP has had from its inception placed priority on technical support for its members through education and publications. The Society conducts examinations and awards professional qualifications from diploma to post-graduate levels; the latter being the Masters of Science in Plantation Management that is jointly conducted with Universiti Putra Malaysia.

Over the years, ISP has organised workshops, seminars, training courses and conferences, at national and international levels on various aspects on research, cultivation and management of plantation crops. The ISP organises the International Planters Conference every three years, the next one being scheduled for 2003.

The Planter, which has been published monthly since 1920 is the main vehicle fordisseminating information on the plantation industry to its members. Although the ISP does not have specific focus or activities on the environment, it has expressed its interests and concerns in numerous editorials in The Planter. The ISP was an active participant in WWF Malaysia Partners-for-Wetlands Forum on in April, 2001 in Sabah.


6.5.3 Processors and Downstream Producers

Other producers along the supply chain have their own organisations to represent their interests in various government and industry bodies and committees. The

Malaysian Palm Oil Millers Association (POMA) was formed in 1985 to representthe interests of the operators of independent palm oil mills that do not own oil palm plantations. It also serves as a mediator to settle disputes among members or between members and suppliers of fresh fruit bunches.

The Palm Oil Refiners Association of Malaysia (PORAM)(Profile ORG.4, page97) looks after the interests of the member companies involved in the palm oilrefining and processing industry. PORAM membership which includes subsidiary companies of plantation companies, subsidiaries of multinational corporations like Cargill and the Birla Group of India and independent refinery companies account for more than 75% of the total export of processed palm oil from Malaysia.

The Malayan Edible Oils Manufacturers’ Association (MEOMA)(Profile ORG.5,page 100) cover a wider range of industries, its members business activities rangefrom palm oil milling, kernel crushing, palm oil refining, production and packaging of cooking oil for the retail consumer, and oleochemicals. Several members are involved in the production coconut oil and coconut oil cakes while others offer services such as broking and insurance. In view of the varied activities, many MEOMA members are also affiliated with other industry organisations such as POMA, PORAM, MOMG and MPOA. Members of MEOMA represent about 80% of the edible oil industry in Malaysia.

The Malaysian Oleochemical Manufacturers Group (MOMG)(Profile ORG.6,page 103) is a product group of the Chemical Industries Council of Malaysia (CICM).MOMG consists of 12 members who are involved in the production of basic oleochemicals namely fatty acids, methyl esters, glycerine and fatty alcohols in Peninsular Malaysia. MOMG membership consists of local oleochemical manufactures and several joint-venture companies with multinational corportations.

The above palm oil producers organisations are essentially trade associations to represent the interests of their respective members. All of them are represented on the Board of MPOB and the Board of Trustees of MPOPC (except MOMG). They are also members of MPOPC’s Palm Oil Task Force on the Environment.

6.5.4 Palm Oil Promotion

The Malaysian Palm Oil Promotion Council (MPOPC)(Profile ORG.7,page 106)was formed in 1990 to replace the Palm Oil Promotion Fund that was set up to address the anti- tropical oil campaign in USA in the 1980s. The mandate of MPOPC is to spearhead the promotional and marketing activities of Malaysian palm oil. MPOPC is an industry-funded organsiation and is currently headed by the Executive Chairman of Kuala Kepong Berhad.

MPOPC’s activities are focused on marketing communications, technical marketing and market promotion in locally and in several key edible oil consuming countries. In view of the increasing concern and adverse publicity over oil palm and the environment, MPOPC set up a Palm Oil Task Force on the Environment (POFTE) in 2001 with membership drawn from all palm oil industry organisations as well as the Malaysian Palm Oil Board (MPOB) and Dept of Environment Malaysia (DOE).
Viewing all 979 articles
Browse latest View live